• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new perceptually-consistent method for MSI visualization

Bioengineer by Bioengineer
February 11, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Skoltech

Skoltech scientists have proposed a Mass Spectrometry Imaging (MSI) method leveraging the unique features of human vision. The research was published in the journal Analytical Chemistry.

High-resolution mass spectrometry is an analytical technique that accurately measures the mass-to-charge ratio (m/z) of ions, produced from molecules by an ionization process, and the ion signal intensity (the relative number of ions). These measurements allow determining molecules’ weights and structure, (by fragmenting them), thereby identifying various compounds, such as proteins, lipids, metabolites, peptides, drug components, and the like. MSI provides information about the spatial distribution of molecules in tissues by performing mass spectrometry analysis of ions using local laser ionization of molecules at each point of the sample (for example, a tumor section).

Interpreting MSI data is quite a challenge. One can start by imaging the distribution of molecules over the tissue section surface and creating a full color image where each color represents a points with similar ion composition. So thousands of ions with corresponding intensities at each point should be represented by just three numerical values that reflect the MSI data to the utmost extent and are correlated with a 3D color space to enable further analysis by a researcher.

“It is essential to glean as much information from the image as possible, taking into account the genuine features of human vision, such as non-linearity and essentially different sensitivity to changes in brightness and color. Although the theory of color perception has been studied since the first half of the 20th century, experts still lack commonly accepted mathematical models accurately explaining all the known properties of human vision,” Anastasia Sarycheva, the lead author and a Skoltech PhD student, explains.

Researchers from the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) and A.A. Kharkevich Institute for Information Transmission Problems of RAS have proposed a new MSI approach leveraging the theory of human color perception and comparable to the existing techniques in the level of detail. The new method preserves borders and gradients when superposing regions of similar ion composition. Thus, the resulting image is more interpretable than in other MSI visualization techniques. The method has been tested on both simulated and experimental data obtained by researchers from the Skoltech Mass Spectrometry Laboratory jointly with biologists from the Skoltech Center for Neurobiology and Brain Restoration (CNBR).

###

Media Contact
Ilyana Zolotareva
[email protected]

Original Source

https://www.skoltech.ru/en/2021/02/a-new-perceptually-consistent-method-for-msi-visualization/

Related Journal Article

http://dx.doi.org/10.1021/acs.analchem.0c04256

Tags: Atomic/Molecular/Particle PhysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesComputer ScienceIndustrial Engineering/ChemistryMathematics/StatisticsMolecular PhysicsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

CoSbS-G Composite Enhances Sodium-Ion Battery Anodes

CoSbS-G Composite Enhances Sodium-Ion Battery Anodes

August 18, 2025
blank

University of Iowa Researchers Discover Promising New Target for Treating Rare, Aggressive Childhood Cancer

August 18, 2025

$5 Million NSF Grant Fuels AI Innovations in National Workflow Management

August 18, 2025

Ochsner Children’s Leads Louisiana with First Robotic-Assisted Pediatric Spine Surgery

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CoSbS-G Composite Enhances Sodium-Ion Battery Anodes

University of Iowa Researchers Discover Promising New Target for Treating Rare, Aggressive Childhood Cancer

$5 Million NSF Grant Fuels AI Innovations in National Workflow Management

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.