• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Plant-based magnetic nanoparticles with antifungal properties

Bioengineer by Bioengineer
February 10, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists developed a plant-based technology for obtaining magnetic nanoparticles with antifungal properties

IMAGE

Credit: Thakur et al. / Nano-Structures & Nano-Objects, 2020

A team of researchers from Immanuel Kant Baltic Federal University obtained magnetic nanoparticles using sweet flag (Acorus calamus). Both the roots and the leaves of this plant have antioxidant, antimicrobial, and insecticide properties. The extract of sweet flag was used as a non-toxic reagent for the manufacture of coated particles. The authors of the work also showed the efficiency of the new nanoparticles against several types of pathogenic fungi that damage cultivated plants. A technology developed by the team provides for the manufacture of nanoparticles from a cheap plant-based raw material and reduces the harmful effect of reagents on the environment.

Because of their unique properties, nanoparticles are used in many areas, from medicine to oil production. Their characteristics depend to a great extent on their size and shape, and the ratio between their surface area and volume plays a key role. The bigger it is, the stronger is a nanoparticle’s local effect. Magnetic nanoparticles that can be controlled with an external magnetic field or emit heat under the influence of electromagnetic radiation have potential in biology and medicine. For example, particles with increased magnetic moment are used both in medical diagnostics and for the treatment of various conditions. Some studies also indicate that magnetic nanoparticles can have antifungal properties. For these applications, scientists suggest using barium ferrite nanoparticles in biocompatible coating.

“There are several methods of manufacturing coated nanoparticles with given characteristics, but all of them include toxic reagents. We have developed an environmentally friendly technology for the production of barium ferrite with the use of sweet flag extract. The surface of these particles has additional biological properties and the particles themselves possess all necessary magnetic and geometrical characteristics,” said Prof. Larissa Panina, a Ph.D. in Physics and Mathematics from BFU.

The team mixed an extract made from dried sweet flag roots with barium and iron salts and water. Then, the mixture was heated to evaporate the liquid and obtain powder. After that, the powder was sintered at temperatures up to 900°C, and nanoparticles were formed. To study their morphology, the team used scanning electron microscopy. This method is based on scanning the surface of a studied object with an electron beam and applies to fragments that are just several nanometers in size. The average size of the hexagon-shaped nanoparticles was from 20 to 50 nm. The team also studied the crystalline structure and elemental composition of the particles using X-ray structural analysis and energy dispersive spectroscopy and found out that the new particles had no admixtures.

The barium ferrite nanoparticles synthesized by the team were active against four species of fungi that cause various diseases of fruit and flowering plants. Even in small concentrations, the nanoparticles were able to slow down the growth of pathogens. In the course of the Fenton reaction, the ions of iron in barium ferrite reacted with peroxides and reactive oxygen forms (OH radicals) appeared. Being extremely active, they reacted with substances in harmful cell walls, damaged them, and thus slowed down the growth of pathogens. According to the authors of the study, this is a universal mechanism that might make the nanoparticles active against other species of fungi, too.

###

Media Contact
Alexandra V. Titova
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.nanoso.2020.100599

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

November 7, 2025
Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

November 7, 2025

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CDCA7 Alleles Influence CG Methylation in Arabidopsis

Population Lifestyle Changes Boost Life Expectancy: Study

Hanyang University Researchers Unveil Innovative High-Resolution Mechanoluminescent Platform Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.