• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

THz spectroscopy tracks electron solvation in photoionized water

Bioengineer by Bioengineer
February 9, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

THz wave absorption signal with a unique two-step decay characteristic in the time domain was demonstrated, revealing fundamental aspects of the charge transport process in water.

IMAGE

Credit: Tan et al., doi 10.1117/1.AP.3.1.015002

Photoionization of water involves the migration and solvation of electrons, with many transient and highly active intermediates. The process results in a large blue shift in the absorption spectrum, from the THz or gigahertz region to the visible range. While the behavior of low-density quasifree electrons excited by small pump power density has been investigated extensively, we still know little about the transient evolution of photoexcited plasma in liquid water. Valuable insights were recently provided by an international research team in a study published in Advanced Photonics.

According to Liangliang Zhang, physics professor at Capital Normal University in Beijing and one of the senior authors on the study, the physical mechanism of plasma evolution on the ultrafast sub-picosecond scale in liquid water is considered as an extension of the theory of gas plasma. But laser-induced plasma in liquid water is accompanied by more complex and stronger nonlinear effects than those in gas, since water has a higher nonlinear coefficient, a lower excitation threshold, and a higher electron density. These differences promise the possibility of unlocking new technologies and applications, encouraging researchers to explore the potential physical mechanism of photoexcited plasma in liquid water.

Water solvent electrons?

Zhang’s team induced plasma in a stable free-flowing water film by using 1650-nm femtosecond laser pulses. They focused these intense terahertz (THz) pulses to probe at the sub-picosecond scale the temporal evolution of quasifree electrons of laser-induced plasma in water. THz wave absorption with a unique two-step decay characteristic in the time domain signature was demonstrated, indicating the significance of electron solvation in water.

Using the Drude model combined with the multilevel intermediate model and particle-in-a-box model, the researchers simulated and analyzed the quasifree electrons to obtain key information such as the frequency-domain absorption characteristics and solvation ratio. Remarkably, as the quasifree electron density increased, the traps related to the bound states appeared to saturate, resulting in a large number of quasifree electrons that cannot be completely solvated. According to Zhang, “This work provides insights on the fundamental aspects of the charge transport process in water and lays a foundation for further understanding of the physicochemical properties and transient evolution of femtosecond-laser-pulse-excited plasma in water.”

###

Read the original research article by Yong Tan et al., “Transient evolution of quasi-free electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy,” Adv. Photon. 3(1), 015002 (2021), doi 10.1117/1.AP.3.1.015002

Media Contact
Daneet Steffens
[email protected]

Original Source

https://spie.org/news/thz-spectroscopy-tracks-electron-solvation-in-photoionized-water

Related Journal Article

http://dx.doi.org/10.1117/1.AP.3.1.015002

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/MicromachinesOpticsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Wastewater Technology Addresses Fatbergs at Their Source

August 20, 2025
blank

Blocking Brain Damage Could Slow Brain Cancer Growth

August 20, 2025

Nerve Damage from Cancer Triggers Chronic Inflammation and Undermines Immunotherapy Effectiveness

August 20, 2025

Scientists Develop More Efficient, Cost-Effective Magnets

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Wastewater Technology Addresses Fatbergs at Their Source

Blocking Brain Damage Could Slow Brain Cancer Growth

Nerve Damage from Cancer Triggers Chronic Inflammation and Undermines Immunotherapy Effectiveness

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.