• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new modifier increases the efficiency of perovskite solar cells

Bioengineer by Bioengineer
February 9, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sergey Gnuskov/NUST MISIS

The research team of NUST MISIS has presented an improved structure of perovskite solar cells. Scientists have modified perovskite-based solar cells using MXenes — thin two-dimensional titanium carbides with high electrical conductivity. The MXenes-based modified cells showed superior performance, with power conversion efficiency exceeding 19% (the reference demonstrated 17%) and improved stabilized power output with respect to reference devices. The results have been published in the Nano energy international scientific journal.

Perovskite solar cells are promising alternative energy technology worldwide. They can be printed on special inkjet or slot die printers with minimal quantity of vacuum processes. This reduces the cost of the device compared to traditional silicon solar cell technology.

Their other advantages are flexibility (the solar cell can be made on substrates of PET a common material for plastic bottles) and compactness. Perovskite solar cells can be mounted on the walls of buildings and curved surfaces of automobile panoramic roofs, receiving independent power supply.

The perovskite module has a sandwich structure: there is a process of collecting electrons between the layers. As a result, the energy of sunlight is converted into electrical energy. The layers are very thin — from 10 to 50 nanometers, and the “sandwich” itself is thinner than a human hair. The collection of the charge carriers in the solar cells should go with minimal losses during electron transport. The reduction of the such losses in the device will increase the power of the solar cell.

A scientific group of physicists from NUST MISIS and the University of Tor Vergata (Rome, Italy) have shown experimentally that the addition of a small amount of titanium carbide-based MXenes to light-absorbing perovskite layers improves the electronic transport process and optimizes the performance of the solar cell. The name — MXenes comes from the synthesis process. The material is made by etching and exfoliation of the atomically thin metal carbides pre-coated with aluminum (MAX phases — layered hexagonal carbides and nitrides).

“In this work, we demonstrate a useful role of MXenes doping both for the photoactive layer (perovskite) and for the electron transport layer (fullerenes) in the structure of solar cells based on nickel oxide,” said the co-author of the paper, a researcher from the NUST MISIS Laboratory for Advanced Solar Energy, post-graduate student Anastasia Yakusheva. “On the one hand, the addition of MXenes helps to align the energy levels at the perovskite/fullerene interface, and, on the other hand, it helps to control the concentration of defects in the thin-film device, and improves the collection of photocurrent.”

The solar cells developed with the new approach have shown improved characteristics with a power conversion efficiency exceeding 19%. This is 2% more in comparison to the reference devices.

The approach proposed by the developers can be easily scaled to the format of modules and large-area panels. Doping with MXenes does not change the fabrication sequence and integrated only to the initial stage of ink preparation without changes to architecture of the device.

###

Media Contact
Lyudmila Dozhdikova
[email protected]

Original Source

https://en.misis.ru/university/news/science/2021-01/7202/

Related Journal Article

http://dx.doi.org/10.1016/j.nanoen.2021.105771

Tags: Chemistry/Physics/Materials SciencesEcology/EnvironmentElectrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)MaterialsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

GCN5-ERK Loop Fuels Lactate-Driven Cancer Growth

January 13, 2026
Comparing Microscopy, LAMP, PCR for Detecting Bovine Babesiosis

Comparing Microscopy, LAMP, PCR for Detecting Bovine Babesiosis

January 13, 2026

Global Genomic Solidarity Boosts Early Virus Detection

January 13, 2026

Exploring Bio-Compost Potential for Sustainable Agriculture

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    72 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GCN5-ERK Loop Fuels Lactate-Driven Cancer Growth

Comparing Microscopy, LAMP, PCR for Detecting Bovine Babesiosis

Global Genomic Solidarity Boosts Early Virus Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.