• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers identify a new molecular mechanism related to severe anaphylaxis

Bioengineer by Bioengineer
February 9, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JACI

Anaphylaxis is a systemic allergic reaction that can affect the skin, the gastrointestinal tract, the respiratory system and the cardiovascular system. The most severe form of anaphylaxis is anaphylactic shock, which features hypotension and can cause death. This reaction can have several causes, such as allergic reactions to food, medicines or insect venom.

The molecular mechanisms that cause the severity of these kinds of reactions is still unknown. In a study led by researchers of the University of Barcelona and IDIBAPS, researchers analyzed the mutation of a gen detected in a patient who suffered from recurrent anaphylactic shocks caused by the allergy to paper wasp venom (Polistes dominula). The results, published in the Journal of Allergy and Clinical Immunology, revealed a new molecular mechanism that can control the degree of severity in an anaphylactic reaction.

The study is led by UB and IDIBAPS researchers Margarita Martín and Rosa Muñoz-Cano. Both are members of the Asthma, Allergic and Adverse Reactions Network (ARADyAL) of the Carlos III Institute.

Researchers carried out the biochemical, functional and structural characterization of mutations in the KARS gen, detected in the patient. “The study combines clinical data from the patient with severe anaphylaxis and carrier of a mutation in the KARS gen, with biochemical, functional and structural data that show an anomalous function of the LysRS protein, coded by this gen”, notes Margarita Martín.

The LysRS protein is an enzyme with a dual function. It plays a key role in the protein synthesis, and it is regulated by the phosphorylation in the highaffinity receptor for immunoglobulin E (IgE) and activates the MITF transcription factor, which takes part in the transcription of proinflammatory mediators in the mast cell, a type of cells in the immune system that act as inflammatory processes caused by allergic reactions.

From the biochemical perspective, results show that the replacement of a proline for an arginine in the LysRS protein aminoacid 542 causes structural changes. These changes affect the protein, which moves towards the nucleus and stops its function in the protein synthesis, activating the MITF transcription factor when there is a lack of stimuli. “This cause sthe increase in the synthesis of proinflammatory mediators and an activation of the mast cell in presence of the allergen, which drives to an anaphylactic shock. The new mechanism identified in this study involves the signalling base IgE-LysRWS-MITF, which would control the degree of severity in an anaphylactic reaction”, says Margarita Martín.

“This discovery will enable us to identify those patients at risk of having severe anaphylaxis, probably beyond those caused by the paper wasp, and set the proper prophylactic measures”, concludes Rosa Muñoz-Cano, also doctor in the Allergology Department of Hospital Clínic.

Moreover, the analysis of the structure and dynamics of LysRS carried out by the group led by researcher Modesto Orozco (UB-IRB Barcelona), who took part in the study as well, identifies for the first time the change mechanism f LysRS from translation to transcription at a molecular level.

###

Media Contact
Bibiana Bonmati
[email protected]

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2021/02/012.html

Related Journal Article

http://dx.doi.org/10.1016/j.jaci.2020.12.637

Tags: Medicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Rewrite Nuclear PKM2: a signal receiver, a gene programmer, and a metabolic modulator as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Boosting Graduate Seminar Engagement with Active Learning

August 28, 2025

Study Finds Lack of Strong Evidence Supporting Alternative Autism Treatments

August 28, 2025

Balancing High-Value Care with Eco-Friendly Testing Practices

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Nuclear PKM2: a signal receiver, a gene programmer, and a metabolic modulator as a headline for a science magazine post, using no more than 8 words

Rewrite Association between polygenic risk and survival in breast cancer patients as a headline for a science magazine post, using no more than 7 words

Boosting Graduate Seminar Engagement with Active Learning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.