• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Synthesizing valuable chemicals from contaminated soil

Bioengineer by Bioengineer
January 29, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers of Mainz University use electrolysis to produce dichloro and dibromo compounds in a safer and more environmentally friendly manner; results published in Science

IMAGE

Credit: photo/©: Eric Lichtenscheidt

Scientists at Johannes Gutenberg University Mainz (JGU) and ETH Zurich have developed a process to produce commodity chemicals in a much less hazardous way than was previously possible. Such commodity chemicals represent the starting point for many mass-produced products in the chemical industry, such as plastics, dyes, and fertilizers, and are usually synthesized with the help of chlorine gas or bromine, both of which are extremely toxic and highly corrosive. In the current issue of Science, the researchers report that they have been able to utilize electrolysis, i.e., the application of an electric current, to obtain chemicals known as dichloro and dibromo compounds, which can then be used to synthesize commodity chemicals. “Chlorine gas and bromine are difficult to handle, especially for small laboratories, as they require strict safety procedures,” said Professor Siegfried Waldvogel, spokesperson for JGU’s cutting-edge SusInnoScience research initiative, which helped develop the new process. “Our method largely eliminates the need for safety measures because it does not require the use of chlorine gas or bromine. It also makes it easy to regulate the reaction in which the desired chemicals are synthesized by controlling the supply of electric current.”

According to Professor Siegfried Waldvogel, electrolysis can be used to obtain dichloro and dibromo compounds for example from solvents that would ordinarily be used to produce PVC. “This is even much simpler than synthesizing dichloro and dibromo products from chlorine gas or bromine, respectively.” The research team, he claims, has demonstrated that the novel process functions as intended for more than 60 different substrates. “The process can be used for molecules of different sizes and is thus broadly applicable. It is also easy to scale up, and we have already been able to employ it to transform larger quantities in the multi-gram range,” Waldvogel added. The chemist is particularly enthusiastic about the discovery that electrolysis can also be used to separate chlorine atoms from molecules of certain insecticides that have been banned, yielding the desired dichloro products. “There is virtually no natural degradation of such insecticides,” he pointed out. “They persist in the environment for extremely long periods and have now even been detected in the Arctic. Our process could help in eliminating such toxic substances and actually exploit them to our benefit in future.”

###

Media Contact
Professor Dr. Siegfried R. Waldvogel
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.abf2974

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEcology/EnvironmentGeology/SoilIndustrial Engineering/ChemistryPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Proteomics and Metabolomics Reveal Milk Product Integrity

November 5, 2025
Can Targeting Cellular Aging Unlock New Treatments for Metabolic Diseases?

Can Targeting Cellular Aging Unlock New Treatments for Metabolic Diseases?

November 5, 2025

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

November 5, 2025

Evaluating PR1 Genes in Mung Bean’s Pathogen Response

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proteomics and Metabolomics Reveal Milk Product Integrity

Rickettsia felis-Inspired Meningoencephalitis in Child: Case Study

COMP Drives Colorectal Cancer via EMT Regulation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.