• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Biodegradable displays for sustainable electronics

Bioengineer by Bioengineer
January 26, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

KIT researchers develop biodegradable printed display — publication in the Journal of Materials Chemistry

IMAGE

Credit: Manuel Pietsch, KIT

In the next years, increasing use of electronic devices in consumables and new technologies for the internet of things will increase the amount of electronic scrap. To save resources and minimize waste volumes, an eco-friendlier production and more sustainable lifecycle will be needed. Scientists of Karlsruhe Institute of Technology (KIT) have now been the first to produce displays, whose biodegradability has been checked and certified by an independent office. The results are reported in the Journal of Materials Chemistry. (DOI: 10.1039/d0tc04627b)

“For the first time, we have demonstrated that it is possible to produce sustainable displays that are largely based on natural materials with the help of industrially relevant production methods. After use, these displays are no electronic scrap, but can be composted. In combination with recycling and reuse, this might help minimize or completely prevent some of the environmental impacts of electronic scrap,” says Manuel Pietsch, first author of the publication and researcher of KIT’s Light Technology Institute (LTI), who is working at the Heidelberg InnovationLab.

Low Energy Consumption, Simple Component Architecture

Functioning of the display is based on the so-called electrochromic effect of the initial organic material. When voltage is applied, light absorption is modified and the material changes its color. Electrochromic displays have a low energy consumption and simple component architecture compared to commercially available displays, such as LED, LCD, and E-paper. Another advantage is that these displays can be produced by inkjet printing in a customized, inexpensive, and material-efficient way. Moreover, this process is suited for scaling with a high throughput. The materials used mainly are of natural origin or biocompatible. Sealing with gelatine makes the display adhesive and flexible, such that it can be worn directly on the skin.

Use in Medical Diagnostics and Food Packagings

The display is generally suited for short-lifecycle applications in various sectors. In medical diagnostics, for instance, where hygiene plays an important role, sensors and their indicators have to be cleaned or disposed of after use. The newly developed display will not be dumped as electronic scrap, but is compostable. It can also be used for quality monitoring in food packagings, where reuse is not permitted. Digital printing allows the displays to be adapted to persons or complex shapes without any expensive modification of the process. This reduces the consumption of resources.

“As far as we know, this is the first demonstration of a biodegradable display produced by inkjet printing. It will pave the way to sustainable innovations for other electronic components and to the production of eco-friendlier electronics,” says Gerardo Hernandez-Sosa, Head of LTI’s Printed Electronics Group at the Heidelberg InnovationLab.

###

Original Publication:

Manuel Pietsch, Stefan Schlisske, Martin Held, Noah Strobel, Alexander Wieczorek, Gerardo Hernandez-Sosa: Biodegradable inkjet-printed electrochromic display for sustainable short-lifecycle electronics. Journal of Materials Chemistry, DOI: 10.1039/d0tc04627b

https://pubs.rsc.org/en/content/articlelanding/2020/TC/D0TC04627B#!divAbstract

Press contact:

Regina Link, Press Officer, Phone: +49 721 608-41158, Email: [email protected]

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

Media Contact
Monika Landgraf
[email protected]

Original Source

https://www.kit.edu/kit/english/pi_2020_111_biodegradable-displays-for-sustainable-electronics.php

Tags: Biomedical/Environmental/Chemical EngineeringEcology/EnvironmentElectrical Engineering/ElectronicsMedicine/HealthTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.