• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

1 million Euros for black holes made from semimetals

Bioengineer by Bioengineer
January 22, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © pixelwg/Jörg Bandmann

One of the central goals is to control the flow of electrons in these materials so precisely that new types of quantum sensors can be developed. The project is an international collaboration of researcher from TU Dresden and the University of Luxembourg, and has just received funding of roughly one million Euros.

In order to conduct electric currents along precisely defined paths, researchers often focus on the analysis of electronic transport properties. For the first time, specific theoretical foundations of different areas of physics will now be unified within the Cluster of Excellence ct.qmat with the goal of unleashing the full potential of semimetals. This class of materials is still relatively new, and has not yet been employed in the design of electronic devices. The combination of relativity and quantum mechanics is a new approach towards a systematic manipulation of electrons in semimetals. More precisely, the researchers will translate the curvature of spacetime in black holes to the flow of electons in semimetals. The combination of these two thus far vastly unconnected theories opens up entirely new oppurtunities in worldwide material research.

„Together with two colleagues from Luxembourg, we will develop electronic components for future devices capable of entirely new functionalities. As one example, we want to construct electronic lenses that will allow to very precisely control the flow of electric currents. Thus far, semimetals are not used a lot in the electronics industry because they conduct relatively poorly. But we believe that they are much more powerful than silicon when it comes to manipulating electrons on a microscopic level. This is why research in this field is important and trendsetting”, explains Dr. Meng.

The new research project is entitled „Topology in Relativistic Semimetals” (TOPREL) and will be funded with 925.000 Euro by the Deutschen Forschungsgemeinschaft (DFG) and its Luxembourgish partner organization Fonds National de la Recherche (FNR). Besides Dr. Tobias Meng, who is currently heading an Emmy Noether research group at the TU Dresden, the project is co-directed by two researchers from the University of Luxembourg. Within the next three years, they will build up an infrastructure driving interational top-level research on relativistc semimetals. Two postdoc and one PhD position will be advertised shortly.

###

Cluster of Excellence ct.qmat

The Cluster of Excellence ct.qmat – Complexity and Topology in Quantum Matter is a joint research collaboration by the Julius-Maximilians- Universität Würzburg and the TU Dresden since 2019. More than 250 scientists from 33 countries and four continents perform research on topological quantum materials that reveal surprising phenomena under extreme conditions such as ultra-low temperature, high pressure, or strong magnetic field. Making these special properties usable under everyday conditions will be the basis for revolutionary quantum chips and new types of technical applications. The Cluster of Excellence is funded within Excellence Strategy of the federal and state governments.

Media Contact
Dr. Tobias Meng
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.