• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Record-breaking laser link could help us test whether Einstein was right

Bioengineer by Bioengineer
January 22, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ICRAR

Scientists from the International Centre for Radio Astronomy Research (ICRAR) and The University of Western Australia (UWA) have set a world record for the most stable transmission of a laser signal through the atmosphere.

In a study published today in the journal Nature Communications, Australian researchers teamed up with researchers from the French National Centre for Space Studies (CNES) and the French metrology lab Systèmes de Référence Temps-Espace (SYRTE) at Paris Observatory.

The team set the world record for the most stable laser transmission by combining the Aussies’ ‘phase stabilisation’ technology with advanced self-guiding optical terminals.

Together, these technologies allowed laser signals to be sent from one point to another without interference from the atmosphere.

Lead author Benjamin Dix-Matthews, a PhD student at ICRAR and UWA, said the technique effectively eliminates atmospheric turbulence.

“We can correct for atmospheric turbulence in 3D, that is, left-right, up-down and, critically, along the line of flight,” he said.

“It’s as if the moving atmosphere has been removed and doesn’t exist.

“It allows us to send highly-stable laser signals through the atmosphere while retaining the quality of the original signal.”

The result is the world’s most precise method for comparing the flow of time between two separate locations using a laser system transmitted through the atmosphere.

ICRAR-UWA senior researcher Dr Sascha Schediwy said the research has exciting applications.

“If you have one of these optical terminals on the ground and another on a satellite in space, then you can start to explore fundamental physics,” he said.

“Everything from testing Einstein’s theory of general relativity more precisely than ever before, to discovering if fundamental physical constants change over time.”

The technology’s precise measurements also have practical uses in earth science and geophysics.

“For instance, this technology could improve satellite-based studies of how the water table changes over time, or to look for ore deposits underground,” Dr Schediwy said.

There are further potential benefits for optical communications, an emerging field that uses light to carry information.

Optical communications can securely transmit data between satellites and Earth with much higher data rates than current radio communications.

“Our technology could help us increase the data rate from satellites to ground by orders of magnitude,” Dr Schediwy said.

“The next generation of big data-gathering satellites would be able to get critical information to the ground faster.”

The phase stabilisation technology behind the record-breaking link was originally developed to synchronise incoming signals for the Square Kilometre Array telescope.

The multi-billion-dollar telescope is set to be built in Western Australia and South Africa from 2021.

###

Media Contact
Kirsten Gottschalk
[email protected]

Original Source

https://www.icrar.org/laser-time/

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20591-5

Tags: AstronomyAstrophysicsChemistry/Physics/Materials SciencesOpticsSatellite Missions/ShuttlesSpace/Planetary ScienceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Noncommutative Metasurfaces: Pioneering New Frontiers in Quantum Entanglement

Noncommutative Metasurfaces: Pioneering New Frontiers in Quantum Entanglement

August 21, 2025
Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

August 21, 2025

Proximity Screening Boosts Graphene’s Electronic Quality

August 21, 2025

Revolutionary Laser Technique Simplifies Production of High-Performance Alloy Films

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Noncommutative Metasurfaces: Pioneering New Frontiers in Quantum Entanglement

Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

Proximity Screening Boosts Graphene’s Electronic Quality

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.