• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Toxin chimeras slip therapeutics into neurons to treat botulism in animals

Bioengineer by Bioengineer
January 6, 2021
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: [Credit: S.-I. Miyashita et al., Science Translational Medicine (2021)]

Taking advantage of the chemical properties of botulism toxins, two teams of researchers have fashioned non-toxic versions of these compounds that can deliver therapeutic antibodies to treat botulism, a potentially fatal disease with few approved treatments. The research, which was conducted in mice, guinea pigs, and nonhuman primates, suggests that the toxin derivatives could one day offer a platform to quickly treat established cases of botulism and target hard-to-reach molecules within neurons. Botulism manifests due to bacterial toxins called botulinum neurotoxins (BoNTs), which are the most potent toxins known to humans. BoNTs work by entering and damaging neurons that coordinate movement, resulting in paralysis that requires intensive care and can potentially last for months. There is a dire need for therapies that can quickly reverse paralysis, but developing treatments for existing cases has been difficult because it is challenging to neutralize BoNTs with therapeutics once the toxins have entered neurons. In the first study, Shin-Ichiro Miyashita and colleagues fused different sections of two BoNTs named BoNT/X and BoNT/A, resulting in a chimeric molecule that is both non-toxic and works as a drug delivery platform. Specifically, the researchers combined a neuron-targeting domain of BoNT/A with another domain of BoNT/X that can deliver therapeutic molecules into the interior of neurons. Miyashita et al. found that their approach rapidly delivered an antitoxin antibody into neurons and neutralized both the BoNT/A and BoNT/B neurotoxins in mice, reversing paralysis within a few hours. Taking a similar approach, Patrick McNutt and colleagues engineered a non-toxic BoNT derivative that safely neutralized BoNT/A within neurons. Their treatment also alleviated paralysis and boosted survival in mice, guinea pigs, and nonhuman primates exposed to lethal amounts of BoNT/A. “This platform offers a transformational approach for a precision treatment that might be adapted to diverse presynaptic diseases,” say McNutt et al.

###

Media Contact

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aaz4197

Tags: Immunology/Allergies/AsthmaMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

AI in Orthopedics: Trends, Applications, and Future Insights

August 29, 2025

Innovative Autologous Tissue Valves: A Breakthrough Approach

August 28, 2025

Diffusion Coefficient Predicts Glucocorticoid Success in Thyroid Eye Disease

August 28, 2025

Diabetes Management and Social Vulnerability Link Explored

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI in Orthopedics: Trends, Applications, and Future Insights

Revolutionizing Volleyball Training with Smart Robot Tech

Predicting Baseball Pitch Locations with Deep Learning Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.