• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Integrator: A guardian of the human transcriptome

Bioengineer by Bioengineer
January 5, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Søren Lykkke-Andersen

In a joint collaboration, Danish and German researchers have characterized a cellular activity that protects our cells from potentially toxic by-products of gene expression. This activity is central for the ability of multicellular organisms to uphold a robust evolutionary ‘reservoir’ of gene products.

Manufacturing processes need quality control systems in order to ensure proper assembly of functional products. Moreover, space-consuming, and perhaps even toxic, by-products of such processes need to be properly discarded or recycled by efficient waste handling systems.

By analogy, transcription of our genome is an imperfect process that produces large quantities of non-functional and potentially harmful transcripts both from within and outside of conventional genes. The RNA polymerase II enzyme transcribes the majority of our genes, and it also generates pervasive transcripts from multiple non-genic regions. Over the past decade, it has become increasingly clear that the enzyme is relatively promiscuous when it comes to where it starts, and there are transcription initiation sites scattered everywhere in the genome. However, not all these sites are associated with a ‘proper’ gene, and this requires the presence of specific gene-defining elements.

Discovery of new activity of the protein complex ‘Integrator’

In a new article published in the international journal Molecular Cell, a Danish-German research team has now demonstrated that the multi-protein complex ‘Integrator’ – which was previously described as the transcription termination factor for a specific class of genes encoding small nuclear (sn)RNAs – is in fact a default ‘early’ termination factor for most, if not all RNA polymerase II initiation events (Figure, top panel).

The resulting short transcripts are in most cases rapidly degraded by the ribonucleolytic RNA exosome. This mechanism is also at play to varying degrees inside conventional genes, but these have evolved elements, counteracting such early termination, to facilitate productive transcription elongation, which eventually produces functional transcripts such as protein-coding ‘messenger’ (m)RNA (Figure, bottom panel).

Through this newly discovered mechanism of action, Integrator ensures that production of wasteful transcripts remains limited, while at the same time allowing maintenance of thousands of transcription start sites under neutral selection in the human genome. These provide a reservoir of transcription units that may turn into functional genes over time, exemplified by the evolution of the currently known functional RNAs of our genome. As a curious example, snRNA genes appear to be a special case, taking advantage of the general early termination activity of Integrator and fend off the ensuing RNA exosome activity to allow production of stable functional RNAs (Figure, top panel).

Inactivating mutations in Integrator subunits lead to severe neurodevelopmental disorders, and elevated expression of some integrator subunits is associated with increased epithelial-to-mesenchymal transition – a key step in tumor metastasis. This duality highlights the need for a tight control of the Integrator activity. Moreover, the realization that Integrator is a general attenuator of nonproductive transcription may inform the molecular characterization and potential treatment of such ailments.

###

The work was carried out in a collaboration between researchers from Max Planck Institute in Göttingen and Aarhus University.

The scientific article was published in the international journal Molecular Cell:

Søren Lykke-Andersen, Kristina ?umer, Ewa Šmidová Molska, Jérôme O. Rouvière, Guifen Wu, Carina Demel, Björn Schwalb, Manfred Schmid, Patrick Cramer and Torben Heick Jensen

“Integrator is a genome-wide attenuator of nonproductive transcription”

DOI: https://doi.org/10.1016/j.molcel.2020.12.014

For further information, please contact

Søren Lykke-Andersen, PhD – [email protected] – mobile: +45 50510996

Professor Torben Heick Jensen – [email protected] – mobile: +45 60202705

Department of Molecular Biology and Genetics, Aarhus University, Denmark

Media Contact
Professor Torben Heick Jensen
[email protected]

Original Source

https://mbg.au.dk/en/news-and-events/news-item/artikel/integrator-a-guardian-of-the-human-transcriptome/

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2020.12.014

Tags: BiochemistryBiologyBiotechnologyCell BiologyGeneticsMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

South American Long-Necked Dinosaur Adapted for Easy Bipedal Stance

South American Long-Necked Dinosaur Adapted for Easy Bipedal Stance

October 23, 2025
blank

Revolutionary Discovery Challenges Six Decades of Understanding in Fat Metabolism and Obesity

October 23, 2025

Breakthrough Discovery Unveils New Method to Eliminate Cancer-Linked Molecule

October 23, 2025

Michael Laposata Honored with Champion for Innovation Award by Association for Molecular Pathology

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    163 shares
    Share 65 Tweet 41
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Redefining Birth: Ethics of Artificial Womb Technology

Highlighting the Hidden Risks of Heart Disease

South American Long-Necked Dinosaur Adapted for Easy Bipedal Stance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.