• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Convex to concave: More metasurface moiré results in wide-range lens

Bioengineer by Bioengineer
January 4, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kentaro Iwami/ TUAT

The odd, wavy pattern that results from viewing certain phone or computer screens through polarized glasses has led researchers to take a step toward thinner, lighter-weight lenses. Called moiré, the pattern is made by laying one material with opaque and translucent parts at an angle over another material of similar contrast.

A team of researchers from Tokyo University of Agriculture and Technology, TUAT, in Japan have demonstrated that moiré metalenses–tiny, patterned lenses composed of artificial “meta” atoms–can tune focal length along a wider range than previously seen. They published their results on November 23 in Optics Express, a journal of The Optical Society.

“Metalenses have attracted a lot of interest because they are so thin and lightweight, and could be used in ultra-compact imaging systems, like future smart phones, virtual reality goggles, drones or microbots,” said paper author Kentaro Iwami, associate professor in the TUAT Department of Mechanical Systems Engineering.

The problem, Iwami said, is that to keep the metalenses compact enough for use in the desired applications, they have a limited focal tuning range for sight. Focal length, measured in millimeters, is the angle of view and strength of magnification and is dictated by the lens shape.

A convex lens, which has a positive focal length, brings light rays to a single point, while a concave lens, with a negative focal length, disperses the light rays. When combined in varifocal lenses, the result is a more complete, sharper image–but tuning the focal length from negative to positive in something as compact as a metalens is tricky, according to Iwami.

“We found that wide-focal length tuning from convex to concave can be achieved by rotational moiré metalenses,” Iwami said.

The researchers developed metalenses with high-contrast artificial “meta” atoms composed of amorphous silicon octagonal pillars. When they overlaid one meta lens over the other, creating the moiré pattern, and rotated them, they could use infrared light to tune the focal length of the lenses.

Next the researchers plan to demonstrate wide-focal length tuning at a visible wavelength, and improve the quality of the lens, with the ultimate goal of realizing an ultra-compact imaging system.

###

This paper was co-authored by Chikara Ogawa, Tomoyasu Nagase and Satoshi Ikezawa.

This work was supported by the Nanotechnology Platform site at the University of Tokyo, which is supported by Japan’s Ministry of Education, Culture, Sports, Science, and Technology.

For more information about the Iwami laboratory, please visit

http://nmems.lab.tuat.ac.jp/en/

Original publication:

Kentaro Iwami *, Chikara Ogawa, Tomoyasu Nagase, and Satoshi Ikezawa,

“Demonstration of focal length tuning by rotational varifocal moiré metalens in an ir-A wavelength,” Opt. Express 28, 35602-35614 (2020)

https://doi.org/10.1364/OE.411054

*: Corresponding author

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Contact:

Kentaro Iwami, Ph.D.

Associate Professor

Institute of Engineering,

Division of Advanced Mechanical Systems Engineering

Tokyo University of Agriculture and Technology (TUAT), Japan

[email protected]

Media Contact
Yutaka Nibu, Ph.D.
[email protected]

Related Journal Article

http://dx.doi.org/10.1364/OE.411054

Tags: ElectromagneticsMechanical EngineeringNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.