• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bionic idea boosts lithium-ion extraction

Bioengineer by Bioengineer
December 31, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: XIN Weiwen

Lithium is an energy-critical element that is considered to be a geopolitically significant resource. However, the supply of lithium may not be enough to meet continuously increasing demand. As a result, scientists are looking for new ways to extract lithium ions.

Ion selective membranes have already been used extensively for water treatment and ion sieving in electrodialysis technology. However, conventional membranes exhibit low and useless Li+ selectivity, making them insufficient for meeting industry requirements.

Chinese scientists have recently made progress in the preparation and application of a bioinspired material that is capable of achieving controlled ion transport and sieving, especially for lithium-ion extraction.

This work, published in Matter, was completed by Prof. WEN Liping’s team at the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences and Prof. ZHANG Qianfan’s team from Beihang University.

In this research, scientists utilized nanofibers, such as from natural silk and polyethyleneimine, to decorate 2D nanosheets. Inspired by the biological structure in nature, the 2D nanosheets are self-assembled layer-by-layer to form a nacre-like stacked structure. The composited membrane acts as an ion-gating heterojunction with opposite charges and asymmetrical nanochannels.

“To be more detailed, the composited membrane shows higher toughness than other reported materials and natural nacre structures. The membrane is also able to efficiently control interlayer spacing and achieve stable ordered nanostructures,” said Prof. WEN.

The typical brick-and-mortar structure formed by nanofibers and nanosheets exhibits a long-time use in solutions. Meanwhile, the confined dehydration and charge-exclusion effects conduct Li+ through composited channels rapidly.

Experimental and theoretical results indicate Li+ shows an excellent permeation rate that is far higher than Na+, K+, Mg2+ and Ca2+ due to its small radius and low charge.

Compared with mobilities in bulk, Li+ remains basically consistent with the bulk value. In stark contrast, other ions become less mobile than Li+ in bulk.

The methodology of using tailor-made 2D membranes with chemical, geometrical, and electrostatic heterostructures allows further exploration of nanofluidic phenomena inside nanochannel membranes for water treatment or power generation.

###

This work was supported by the National Key R&D Program of China, the National Natural Science Foundation of China, and the Strategic Priority Research Program of the Chinese Academy of Sciences.

Media Contact
HE Jianing
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/chem/202012/t20201231_261039.shtml

Related Journal Article

http://dx.doi.org/10.1016/j.matt.2020.12.003

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

‘Rosetta Stone’ of Code Enables Scientists to Execute Fundamental Quantum Computing Operations

August 21, 2025
blank

Unnatural Base Pair Detects Epigenetic Cytosine Changes

August 21, 2025

Innovative Research Paves the Way for Greener, Faster Metal Production

August 21, 2025

Scientists Harness Electrochemistry to Enhance Nuclear Fusion Rates

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

New Study Uncovers Key Genes That Suppress Blood Cancer Progression

Electron Flow Matching Advances Reaction Mechanism Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.