• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Hormone metabolites found in poop give researchers new insight into whale stress

Bioengineer by Bioengineer
December 21, 2020
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Oregon State University Marine Mammal Institute

NEWPORT, Ore. – Poop samples are an effective, non-invasive tool for monitoring gray whale reproduction, stress and other physiological responses, a new study from Oregon State University shows.

Researchers from OSU’s Geospatial Ecology of Marine Megafauna Laboratory collected 158 fecal, commonly known as poop, samples from Eastern North Pacific gray whales off the coast of Oregon between 2016 and 2018 and used the samples to assess endocrine levels and establish hormone baselines for stress and reproduction in the animals.

The study is believed to be the first to use fecal samples as an endocrine assessment tool in Eastern North Pacific gray whales. Fecal samples can provide a wide range of important information about whale health in a noninvasive way, said Leigh Torres, an associate professor in OSU’s Marine Mammal Institute and director of the GEMM Lab.

“Understanding whale physiology is really important to evaluate how human, activities impact whales,” Torres said. “But it is really, really hard to study whale physiology. You can’t observe most physiological responses. And you can’t just ask a whale: Are you stressed out? So we have to get creative.”

The findings were published this month in the journal Conservation Physiology. The paper’s lead author is Leila Soledade Lemos, who recently completed her doctorate in Oregon State’s Department of Fisheries and Wildlife and worked with Torres in the GEMM Lab. Lemos is now a postdoctoral associate at Florida International University.

Most gray whales migrate from breeding grounds in Mexico to feeding grounds in the Bering and Chukchi seas between Alaska and Russia, where they spend the summer. Torres and her team study a distinct population of gray whales known as the Pacific Coast Feeding Group, which spend the summer months feeding in coastal waters of Oregon, as well as northern California, Washington and southern Canada.

Torres and her research team have been observing and conducting annual “health check-ups” on this population since 2016. When they spot a defecating whale from a boat or via a drone, they follow in the animal’s wake and use nets to capture samples. The drones are also used to capture images of the whales, allowing researchers to monitor the animals’ body condition and behavior.

Researchers used the collected fecal samples to analyze four hormone metabolites: two reproductive hormones; a stress hormone; and thyroid, which can indicate nutrition-related stress.

With this data, the researchers were able to see how hormones fluctuated with a whale’s age and sex and establish baseline hormone levels for different cycles of a whale’s life, including during pregnancy.

“This was a first step to understanding how hormones vary through a whale’s life cycle and in times of stress,” Lemos said. “It helps us establish baselines and ranges of hormone levels.”

The researchers also were able to document a stressful event in a specific whale. They collected a fecal sample from a whale within 24 hours of a documented injury from a propeller or vessel strike. The fecal sample collected after the injury showed a spike in stress hormone levels, almost three times higher than this whale’s stress levels on previous days without the injury.

The researchers also captured a fecal sample from a mature male who was engaged in competitive reproductive behavior with another male whale. That whale’s testosterone level was very high and may reflect the typical hormone levels of adult breeding males. The researchers’ ability to connect fecal samples to specific individual whales adds important context to the data to help understand what drives hormone variation, Torres said.

Researchers have continued to collect fecal samples over the last two summers and will continue to analyze hormones as part of their broader work on whale health.

The researchers’ ultimate goal is to understand how variations in human-generated ocean noise impacts whale health, Torres said. Analysis of fecal samples is emerging as an important new tool for understanding how different stressors impact whale physiology. They also hope to use the endocrine information to better understand the role of nutrition and changes in diet on overall whale health.

“Our ability to link hormone variation to an individual’s condition is really a significant advance for the study of whale physiology,” Torres said. “All of our future work on impacts of disturbance events will build on this foundation. It’s super exciting to be able to use these tools to think about whale life in a holistic way.”

###

The research was supported in part by NOAA’s National Marine Fisheries Service Office of Science and Technology Ocean Acoustics Program; Oregon Sea Grant; and the OSU Marine Mammal Institute. Lemos received funding from Brazil’s Science Without Borders Program and its National Council for Scientific and Technological Development (CNPq).

Additional co-authors include Todd Chandler of Oregon State; Kathleen Hunt of the Smithsonian-Mason School of Conservation; and Amy Olsen, Angela Smith and Shawn Larson of the Seattle Aquarium.

Media Contact
Leigh Torres
[email protected]

Original Source

https://beav.es/JwY

Related Journal Article

http://dx.doi.org/10.1093/conphys/coaa110

Tags: BioinformaticsBiologyDevelopmental/Reproductive BiologyEcology/EnvironmentNutrition/NutrientsPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Voltage Imaging Uncovers Hippocampal Memory Inhibition Dynamics

Voltage Imaging Uncovers Hippocampal Memory Inhibition Dynamics

August 3, 2025
CagriSema Promotes Rat Weight Loss by Balancing Energy

CagriSema Promotes Rat Weight Loss by Balancing Energy

August 3, 2025

Noradrenaline Boosts Amygdala Memory Precision for Similar Events

August 3, 2025

Old Mitochondria Drive Stem Cell Niche Renewal

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Colorectal Cancer Using Lifestyle Factors

Optical Matrix Multipliers Revolutionize Image Encoding and Decoding

Voltage Imaging Uncovers Hippocampal Memory Inhibition Dynamics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.