• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Carbon capture’s next top model

Bioengineer by Bioengineer
December 16, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research led by Pitt analyzes modeling techniques for carbon capture technology

IMAGE

Credit: Ramon Cordero/Mainline Photography

In the transition toward clean, renewable energy, there will still be a need for conventional power sources, like coal and natural gas, to ensure steady power to the grid. Researchers across the world are using unique materials and methods that will make those conventional power sources cleaner through carbon capture technology.

Creating accurate, detailed models is key to scaling up this important work. A recent paper led by the University of Pittsburgh Swanson School of Engineering examines and compares the various modeling approaches for hollow fiber membrane contactors (HFMCs), a type of carbon capture technology. The group analyzed over 150 cited studies of multiple modeling approaches to help researchers choose the technique best suited to their research.

“HFMCs are one of the leading technologies for post-combustion carbon capture, but we need modeling to better understand them,” said Katherine Hornbostel, assistant professor of mechanical engineering and materials science, whose lab led the analysis. “Our analysis can guide researchers whose work is integral to meeting our climate goals and help them scale up the technology for commercial use.”

A hollow fiber membrane contactor (HFMC) is a group of fibers in a bundle, with exhaust flowing on one side and a liquid solvent on the other to trap the carbon dioxide. The paper reviews state-of-the-art methods for modeling carbon capture HFMCs in one, two and three dimensions, comparing them in-depth and suggesting directions for future research.

“The ideal modeling technique varies depending on the project, but we found that 3D models are qualitatively different in the nature of information they can reveal,” said Joanna Rivero, graduate student working in the Hornbostel Lab and lead author. “Though cost limits their wide use, we identify 3D modeling and scale-up modeling as areas that will greatly accelerate the progress of this technology.”

Grigorios Panagakos, research engineer and teaching faculty in Carnegie Mellon University’s Department of Chemical Engineering, brought his expertise in analyzing the modeling of transport phenomena to the review paper, as well.

###

The paper, “Hollow Fiber Membrane Contactors for Post-Combustion Carbon Capture: A Review of Modeling Approaches,” (DOI: 10.3390/membranes10120382) was published in the 10th anniversary special issue of the journal Membranes and was authored by Joanna Rivero, Grigorios Panagakos, Austin Lieber, and Katherine Hornbostel.

Media Contact
Maggie Pavlick
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2020/Hornbostel-Carbon-Capture-Membranes/

Related Journal Article

http://dx.doi.org/10.3390/membranes10120382

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

Revealing the Unseen: A Breakthrough Method to Enhance Nanoscale Light Emission

August 29, 2025

Fluorescent Smart Eye Patch Revolutionizes Monitoring of Eye Health

August 29, 2025

Protective Dual Shell Extends Lifespan of Lithium-Rich Batteries

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Age-Dependent Nesting Patterns in White Storks

Eco-Friendly Cu-NiO@rGO Nanocomposite for Catalysis and Antioxidants

Identifying Optimal Reference Genes for Mouse Cortex RT-qPCR

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.