• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Colorful, magnetic Janus balls could help foil counterfeiters (video)

Bioengineer by Bioengineer
December 16, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: American Chemical Society

Counterfeiters who sell knockoffs of popular shoes, handbags and other items are becoming increasingly sophisticated, forcing manufacturers to find new technologies to stay one step ahead. Now, researchers reporting in ACS Nano have developed tiny “Janus balls” that show their colored side under a magnetic field. These microparticles could be useful in inks for anti-counterfeiting tags, which could be verified with an ordinary magnet, the researchers say. Watch a video of the Janus balls here.

In ancient Roman mythology, Janus was the two-faced god of transitions. Similarly, so-called Janus balls are microspheres that have two sides with distinct properties. Shin-Hyun Kim and colleagues wanted to make Janus balls out of two unmixable resins: one that contained magnetic nanoparticles, and another that contained silica particles. The magnetic side of the ball would also contain carbon black, causing that hemisphere to appear dark, whereas the silica particles on the other side of the ball would self-assemble into a crystalline lattice, producing structural colors. The result would be tiny balls that normally have their black sides facing up, except when a magnetic field causes them to flip to their colorful sides.

To make Janus balls, the researchers used a microfluidic device to unite drops of the two resins, with a surfactant added to stabilize the joined drops into a spherical shape. Because the silica-containing colored side of the drops was heavier than the black magnetic side, the force of gravity caused the black side to spontaneously face upward, like a roly-poly toy, when the balls were placed in water. Then, the researchers permanently aligned the magnetic nanoparticles in the balls in the same direction. By applying a magnetic field in the opposite direction, they could flip the balls to their colored sides. The researchers made red and green Janus balls by using different sizes of silica particles, with their magnetic nanoparticles aligned in opposite directions. By changing the direction of the applied magnetic field, they could change the colors of 3D-printed chameleon and butterfly shapes. Using different colors and orientations of Janus balls in inks could produce sophisticated, user-interactive anti-counterfeiting tags, the researchers say.

###

The authors acknowledge funding from the National Research Foundation of Korea.

The abstract that accompanies this paper is available here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.
 

To automatically receive news releases from the American Chemical Society, contact [email protected].
 

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: BioinformaticsBiotechnologyChemistry/Physics/Materials SciencesLaw EnforcementLaw Enforcement/JurisprudenceNanotechnology/MicromachinesScience/Health and the LawScience/Health/Law
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.