• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Shining a light on what’s really happening in perovskite solar cells

Bioengineer by Bioengineer
December 9, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Tsukuba researchers take a molecular-level look at what happens in perovskite solar cells when they are operating, to determine the factors that affect their performance

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Consumers worldwide are demanding greener energy sources; therefore, optimizing the performance and economic viability of solar cells is an important research focus. Improving the efficiency of perovskite solar cells has been a particular priority; however, less emphasis has been placed on understanding what makes the cell performance deteriorate. Now, recent findings from researchers at the University of Tsukuba provide a microscopic-level study of perovskite solar cells to address the knowledge gap.

Organic-inorganic hybrid perovskites are attractive materials for use in solar cells because they are easy and cheap to prepare and absorb light over a wide range of wavelengths. Solar cells that use perovskite layers as the photoactive material are continually being improved, with a particular focus on their power conversion efficiency (PCE), which can now exceed 25%.

However, focusing on improving PCEs alone could be causing researchers to miss the significant steps forward that might result from a more detailed understanding of the underlying mechanisms. For example, the question of what causes the performance of perovskite solar cells to deteriorate is an important one that has not been comprehensively answered.

External factors such as oxygen and moisture in the air are known to compromise perovskite layers. However, the internal changes that affect the performance of cells are not as well understood. The researchers have therefore probed the deterioration mechanism using electron spin resonance (ESR) spectroscopy.

“We carried out ESR spectroscopy on perovskite solar cells while they were in use, which gave us a real-time picture of the molecular-level changes,” study corresponding author Professor Kazuhiro Marumoto explains. “Specifically, we observed the charges and defects, and related spin states, in the solar cell layers while the current-voltage characteristics of the solar cells were being measured. This allowed us to understand the relationships between these factors.”

This in-depth investigation of perovskite solar cells in operation showed that changes in the spin states result from changes in hole transport as well as the formation of interfacial electric dipole layers. It was therefore concluded that cell deterioration could be prevented by improving charge mobility in the hole transport material and preventing electric dipole layer formation.

“Establishing that changes in spin states are correlated with device performance has significantly broadened our understanding of perovskite solar cells,” Professor Marumoto says. “We hope that our findings will provide a valuable new starting point for the continued development of solar cells and help accelerate the reality of cost-effective green energy.”

###

The article, “Deterioration mechanism of perovskite solar cells by operando observation of spin states”, was published in Communications Materials at 10.1038/s43246-020-00099-7.

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s43246-020-00099-7

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)MaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Key Biophysical Rules for Mini-Protein Endosomal Escape

August 10, 2025
Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

August 10, 2025

Al–Salen Catalyst Powers Enantioselective Photocyclization

August 9, 2025

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reviving Spent LiFePO4 with Multifunctional Organic Lithium Salt

Key Biophysical Rules for Mini-Protein Endosomal Escape

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.