• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers call for renewed focus on thermoelectric cooling

Bioengineer by Bioengineer
December 7, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

With an established market, need for new materials is urgent

IMAGE

Credit: University of Houston

Almost 200 years after French physicist Jean Peltier discovered that electric current flowing through the junction of two different metals could be used to produce a heating or cooling effect, scientists continue to search for new thermoelectric materials that can be used for power generation.

Researchers writing in Nature Materials, however, say it is time to step up efforts to find new materials for thermoelectric cooling.

Bismuth tellurium compounds have been used for thermoelectric cooling for more than 60 years, and the researchers say the fact that there is already a commercial demand for the technology suggests better materials can expand the market.

“Most work is focused on high temperature materials for power generation, but there’s no market there yet,” said Zhifeng Ren, director of the Texas Center for Superconductivity at the University of Houston and corresponding author for the paper. “Cooling is an existing market, a billion dollar market, and there has not been much progress on materials.”

He and co-authors Jun Mao, a researcher at TcSUH, and Gang Chen, a mechanical engineer and nanotechnologist at the Massachusetts Institute of Technology, call for increased focus on the development of new advanced materials that work at or near room temperature.

The three were part of a group that in 2019 reported in the journal Science a new material that works efficiently at room temperature while requiring almost no costly tellurium, a major component of the current state-of-the-art material.

The material, comprised of magnesium and bismuth, was almost as efficient as the traditional bismuth-tellurium material. Work to improve the material is ongoing, Ren said.

Thermoelectric materials work by exploiting the flow of heat current from a warmer area to a cooler area, providing an emission-free source of energy. The materials can be used to turn waste heat – from power plants, automobile tailpipes and other sources – into electricity, and a number of new materials have been reported for that application, which requires materials to perform at higher temperatures.

Thermoelectric cooling modules have posed a greater challenge because they have to work near room temperature, making it more difficult to achieve a high thermoelectric figure-of-merit, a metric used to determine how efficiently a material works. Thermoelectric materials used for power generation more easily achieve a high figure-of-merit because they operate at higher temperatures – often around 500 Centigrade, or about 930 Fahrenheit.

But there are also advantages to thermoelectric cooling devices: they are compact, operate silently and can almost instantaneously switch between heating and cooling, allowing precise temperature control. They also operate without generating ozone-damaging greenhouse gases.

They are used mainly for small applications, including the transport of medical supplies and cooling laser diodes.

“For large-scale cooling devices, a compressor is still more efficient,” said Ren, who is also M.D. Anderson Chair Professor of Physics. “For smaller systems or for any cooling application requiring very precise temperature control, regular compressor-driven cooling is not as good.”

But the discovery of new and better materials could expand the market.

“If you can find materials with a higher figure-of-merit, you can have a very competitive performance for refrigerators or even air conditioning,” Ren said. “It’s not there yet, but I don’t see why it cannot be in the future.”

###

Media Contact
Jeannie Kever
[email protected]

Original Source

https://uh.edu/news-events/stories/2020/december-2020/12072020ren-nature-materials.php

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Materials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Key Biophysical Rules for Mini-Protein Endosomal Escape

August 10, 2025
Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

August 10, 2025

Al–Salen Catalyst Powers Enantioselective Photocyclization

August 9, 2025

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ensuring Accurate Postmortem Cardiac Device Data Collection

Machine Learning Revolutionizes Heart Health Care

Tracheal, Bronchus, Lung Cancer: China vs. Global

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.