• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electrical spin filtering the key to ultra-fast, energy-efficient spintronics

Bioengineer by Bioengineer
December 4, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Electrical spin filtering avoids energy-costs of magnetic field

IMAGE

Credit: FLEET

Spin-filtering could be the key to faster, more energy-efficient switching in future spintronic technology, allowing the detection of spin by electrical rather than magnetic means.

A UNSW paper published last month demonstrates spin detection using a spin filter to separate spin orientation according to their energies.

Ultra-fast, ultra-low energy ‘spintronic’ devices are an exciting, beyond-CMOS technology.

DETECTING SPIN VIA ELECTRICAL MEANS IN FUTURE SPINTRONICS

The emerging field of spintronic devices use the extra degree of freedom offered by particles’ quantum spin, in addition to its charge, allowing for ultra-fast, ultra-low energy computation.

The key is the ability to generate and detect spin as it accumulates on a material’s surface.

The aim of researchers is to generate and detect spin via electrical means, rather than magnetic means, because electric fields are a lot less energetically costly to generate than magnetic fields.

Energy-efficient spintronics is dependent on both generation and detection of spin via electrical means.

In strongly spin-orbit coupled semiconductor systems, all-electrical generation of spin has already been successfully demonstrated.

However, detection of spin-to-charge conversion has always required a large range of magnetic fields, thus limiting the speed and practicality.

In this new study, UNSW researchers have exploited the non-linear interactions between spin accumulation and charge currents in gallium-arsenide holes, demonstrating all-electrical spin-to-charge conversion without the need for a magnetic field.

“Our technique promises new possibilities for rapid spin detection in a wide variety of materials, without using a magnetic field,” explains lead author Dr Elizabeth Marcellina.

Previously, generation and detection of spin accumulation in semiconductors has been achieved through optical methods, or via the spin Hall effect-inverse spin Hall effect pair.

However, these methods require a large spin diffusion length, meaning that they are not applicable to strongly spin-orbit coupled materials with short spin diffusion length.

ALL-ELECTRICAL SPIN FILTERING

The UNSW study introduces a new method for detecting spin accumulation–using a spin filter, which separates different spin orientations based on their energies.

Typically, spin filters have relied on the application of large magnetic fields, which is impractical and can interfere with the spin accumulation.

Instead, the UNSW team exploited non-linear interactions between spin accumulation and charge, which facilitate the conversion of spin accumulation into charge currents even at zero magnetic field.

“Using ballistic, mesoscopic gallium-arsenide holes as a model system for strongly spin-orbit coupled materials, we demonstrated non-linear spin-to-charge conversion that is all-electrical and requires no magnetic field,” says corresponding author A/Prof Dimi Culcer (UNSW).

“We showed that non-linear spin-to-charge conversion is fully consistent with the data obtained from linear response measurements and is orders of magnitude faster,” says corresponding-author Prof Alex Hamilton, also at UNSW.

Because the non-linear method does not need a magnetic field nor a long spin diffusion length, it promises new possibilities for fast detection of spin accumulation in strongly spin-orbit coupled materials with short spin diffusion lengths, such as TMDCs and topological materials.

Finally, the rapidness of non-linear spin-to-charge conversion can enable time-resolved read-out of spin accumulation down to 1 nanosecond resolution.

###

THE STUDY

A non-linear spin filter for non-magnetic materials at zero magnetic field was published in Physical Review B in October 2020. (DOI 10.1103/physrevb.102.140406)

The work was supported by the Australian Research Council (Discovery and Centres of Excellence programs) and the device was fabricated using facilities of the New South Wales Node of the Australian National Fabrication Facility (ANFF-NSW).

Ultra-low energy spintronics is one of several future technologies studied at FLEET, the Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies.

Media Contact
Errol Hunt
[email protected]

Original Source

http://www.fleet.org.au/blog/electrical-spin-filtering-the-key-to-ultra-fast-energy-efficient-spintronics/

Related Journal Article

http://dx.doi.org/10.1103/physrevb.102.140406

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

The Evolution of Metalenses: From Single Devices to Integrated Arrays

The Evolution of Metalenses: From Single Devices to Integrated Arrays

August 21, 2025
Zigzag Graphene Nanoribbons with Porphyrin Edges

Zigzag Graphene Nanoribbons with Porphyrin Edges

August 21, 2025

Bending Light: UNamur and Stanford Unite to Revolutionize Photonic Devices

August 21, 2025

On-Chip All-Dielectric Metasurface Enables Creation of Topological Exceptional Points

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

STN1 Drives Pancreatic Cancer Metastasis via ZEB1

Anxiety, Anxiety Medications Linked to Parkinson’s Risk

Celebrating 30 Years of Nanoimprint Lithography: Pioneering a New Era in Nanomanufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.