• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Understanding the power of our Sun

Bioengineer by Bioengineer
November 25, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Borexino collaboration, in which also scientists from TU Dresden are involved, has succeeded after more than 80 years in experimentally confirming the Bethe-Weizsäcker cycle.

IMAGE

Credit: Copyright: Borexino Collaboration/Maxim Gromov

Stars produce their energy through nuclear fusion by converting hydrogen into helium – a process known to researchers as “hydrogen burning”. There are two ways of carrying out this fusion reaction: on the one hand, the so-called pp cycle (proton-proton reaction) and the Bethe Weizsäcker cycle (also known as the CNO cycle, derived from the elements carbon (C), nitrogen (N) and oxygen (O)) on the other hand.

The pp cycle is the predominant energy source in our Sun, only about 1.6 per mil of its energy comes from the CNO cycle. However, the Standard Solar Model (SSM) predicts that the CNO cycle is probably the predominant reaction in much larger stars. As early as the 1930s, the cycle was theoretically predicted by the physicists Hans Bethe and Carl Friedrich von Weizsäcker and subsequently named after these two gentlemen. While the pp cycle could already be experimentally proven in 1992 at the GALLEX experiment, also in the Gran Sasso massif, the experimental proof of the CNO cycle has so far not been successful.

Both the pp cycle and the CNO cycle produce countless neutrinos – very light and electrically neutral elementary particles. The fact that neutrinos hardly interact with other matter allows them to leave the interior of the sun at almost the speed of light and to transport the information about their origin to earth unhindered. Here the ghost particles have no more than to be captured. This is a rather complex undertaking, which is only possible in a few large-scale experiments worldwide, since neutrinos show up as small flashes of light in a huge tank full of a mixture of water, mineral oil and other substances, also called scintillator. The evaluation of the measured data is complex and resembles looking for a needle in a haystack.

Compared to all previous and ongoing solar neutrino experiments, Borexino is the first and only experiment worldwide that is able to measure these different components individually, in real time and with a high statistical power. This week, the Borexino research collaboration was able to announce a great success: In the renowned scientific journal Nature, they present their results on the first experimental detection of CNO neutrinos – a milestone in neutrino research.

Dresden physicist Professor Kai Zuber is a passionate neutrino hunter.

He is involved in many different experiments worldwide, such as the SNO collaboration in Canada, which was awarded the Nobel Prize for its discovery of a neutrino mass. The fact that with Borexino, he and his colleagues Dr Mikko Meyer and Jan Thurn have now succeeded in experimentally proving the CNO neutrinos for the first time is another major milestone in Zuber’s scientific career: “Actually, I have now achieved everything I had imagined and hoped for. I (almost) no longer believe in great new discoveries in solar neutrino research for the rest of my lifetime. However, I would like to continue working on the optimization of the experiments, in which the Felsenkeller accelerator here in Dresden plays an extremely important role. For sure, we will be able to have even more precise measurements of the Sun in the future.”

###

Original publication:

M. Agostini, K. Altenmüller […] K. Zuber, G. Zuzel: Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun. Nature.
https://www.nature.com/articles/s41586-020-2934-0

Media Contact
Prof. Kai Zuber
[email protected]

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

c-di-GMP Boosts TLR4-Adjuvanted TB Vaccine Efficacy

Are Combined EHR Datasets Beneficial for Research?

First-Ever Image Captures a Developing Baby Planet Set Against a Dark Backdrop

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.