• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics

Bioengineer by Bioengineer
November 25, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Over the years, the efficiency of PSCs has increased at an unprecedented pace. However, many reports have revealed significant irreversible decomposition of the organic component under high humidity and high temperature conditions, implying the instability of organic-inorganic hybrid perovskite solar cell in real applications. Normally, inorganic materials exhibit better stability compared to organic materials, especially at elevated temperatures. However, the size of the Cs+ cation is too small to hold the PbI62? octahedron. Therefore, the photoactive α-phase (cubic phase) is unstable and the CsPbBrI2 and CsPbI3 materials easily convert to the undesired δ-phase (orthorhombic phase) at room temperature. In addition, a main limiting factor in the photoelectric performance of all-inorganic PSCs is the energy loss (a large Eloss ca. 0.7 to 0.9 eV). In brief, a large Eloss reflects inhomogeneous energy landscape, large trap density and significant energy disorder in the device, which generate a nonradiative energy loss channel and a Voc reduction. Therefore, enhancing the Voc to reduce Eloss is crucial for high performance in all-inorganic PSCs.

Generally, Voc is related to the band gap of perovskite, the highest occupied molecular orbital (HOMO) of the hole-transporting layer (HTL) and the lowest unoccupied molecular orbital (LUMO) of the electron-transporting layer (ETL). Meanwhile, the Voc of devices is also related to the quality of film (grain size). Such as, Kim et al. analyzed an intensity-dependent Voc on the basis of Shockley-Read-Hall (SRH) model and confirmed that decrease in grain size is accompanied by a downturn in optoelectronic performance of PSCs, due to the increase in trap density.

In this work, we demonstrate a secondary grain growth functionalization with ammonium oxalate ((NH4)2C2O4* H2O) to improve the optoelectronic performance of all-inorganic PSCs, wherein (NH4)2C2O4* H2O can effectively promote the secondary growth of the perovskite crystal to a few microns. The resulting high-quality perovskite film exhibited higher carrier mobility and lower trap density and eventually achieved ultra-low energy loss (0.64 eV). The CsPbBrI2:(NH4)2C2O4* H2O-based device exhibits a highest Voc of 1.24 V and PCE of 16.55% under AM 1.5 G, and a record PCE is 28.48% under under a fluorescent lamp of 1000 lux.

###

This project is also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the “111” Project of The State Administration of Foreign Experts Affairs of China), and the Open Fund of the State Key Laboratory of Integrated Optoelectronics (IOSKL2018KF07).

See the article:

Kai-Li Wang, Xiao-Mei Li, Yan-Hui Lou, Meng Li, Zhao-Kui Wang, CsPbBrI2 Perovskites with Low Energy Loss for High-Performance Indoor and Outdoor Photovoltaics, Science Bulletin, 2020, doi: 10.1016/j.scib.2020.09.017

https://www.sciencedirect.com/science/article/pii/S2095927320306137

Media Contact
Zhao-Kui Wang
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scib.2020.09.017

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025
Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

September 10, 2025

A Decade Later: Gravitational Waves Confirm Stephen Hawking’s Black Hole Area Theorem

September 10, 2025

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    60 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Soft Robot Intubation Device Developed at UCSB Promises to Save Lives

New Benchmark Study Reveals Emerging Trends in Canine Behavior

Can Robots Ease Reading Anxiety in Children? A New Study from UChicago’s Department of Computer Science Explores the Possibilities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.