• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Recording the symphony of cellular signals that drive biology

Bioengineer by Bioengineer
November 23, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: C. Linghu, S. Johnson et al./Cell 2020

A new imaging technology lets scientists spy on the flurry of messages passed within cells as they do . . . potentially everything.

Until now, most scientists could visualize only one or two of these intracellular signals at a time, says Howard Hughes Medical Institute Investigator Ed Boyden of the Massachusetts Institute of Technology. His team’s new approach could make it possible to see as many signals as you want – in real time, at once, Boyden says – giving researchers a more detailed view of cells’ internal discussions than ever before.

In tests with neurons, the researchers examined five signals involved in processes such as learning and memory, Boyden and his colleagues report November 23, 2020, in the journal Cell. “You could apply this technology to all sorts of biological mysteries,” he says. “Every cell works due to all the signals inside it.” Because signaling contributes to all biological processes, a better means to study it could illuminate a host of diseases, from Alzheimer’s to diabetes and cancer.

The team’s new approach is a breakthrough, says Clifford Woolf, a neurobiologist at Harvard Medical School who was not involved with the work. He plans to use it to examine how pain-sensing neurons become more sensitive in injury or illness. With the new imaging technology, he says “we can take apart what’s happening in cells in a way that just has not been possible before.”

Give a computer or a human brain information, and it will crackle with electrical impulses as it prepares a response. Within cells, these impulses result in spurts of multiple molecular signals. Boyden describes this process as a group conversation. “Signals within a cell are like a set of people trying to decide what to do for the evening: they take into account many possibilities, and then decide what to collectively do,” he says.

These cellular discussions are what prompt, for example, a neuron to encode a memory or a cell to turn cancerous. Despite their importance, scientists still don’t have a strong grasp of how these signals work together to guide a cell’s behavior.

To see cell signaling in action, scientists typically introduce genes encoding sensors connected to fluorescent proteins. These molecular reporters sense a signal and then glow a specific color under the microscope. Researchers can use a different color reporter for each signal to tell the signals apart. But finding sets of reporters with colors that a microscope can differentiate is challenging. And a typical cellular conversation can involve dozens of signals – or more.

Changyang Linghu and Shannon Johnson, scientists in Boyden’s lab, got around this limitation by affixing reporters to small, self-assembling proteins that act like LEGO bricks. These small proteins “clicked together,” forming clusters that were randomly scattered across the cell like little islands. Each cluster, which appears under the microscope as a luminescent dot, reports only one type of cellular signal. “It’s like having some islands with thermometers to report temperature and other islands with barometers measuring pressure,” Johnson says.

In experiments with neurons, the team created clusters that each glowed upon detection of one of five different signals, including calcium ions and other important signaling molecules. After imaging the live cells, the researchers attached molecular labels to the glowing dots to identify the reporters located there. Using computer analyses, the team turned the dots magenta, yellow, and other colors, depending on whether they represented calcium or another signal. This let them see which signals were switching on and off across a cell’s interior.

By monitoring so many signals at once, the team was able to figure out how each signal related to one another. “Teasing apart such relationships could help scientists understand complex processes ¬- like learning, ” Linghu says.

He likens a cell to an orchestra and its signals to a symphony. “It’s difficult to fully appreciate a symphony by listening to just a single instrument,” he says. Because the new technique lets scientists observe multiple signals at the same time, “we can understand the symphony of cellular activities.”

Boyden’s team estimates it may be possible to detect as many as 16 signals with their technology, but improvements in genetic engineering techniques could raise that number significantly. “Potentially, you could look at dozens, hundreds, or even more signals,” he says. “The next challenge,” Boyden says, “is getting sensors for all of those signals into a cell.”

###

Citation

Changyang Linghu, Shannon L. Johnson et al. “Spatial multiplexing of fluorescent reporters for dynamic imaging of signal transduction networks.” Cell. Published online November 23, 2020. doi: 10.1016/j.cell.2020.10.035

Media Contact
Meghan Rosen
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2020.10.035

Tags: BiochemistryBiologyBiotechnologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Electrode Material on Radish Germination

Impact of Electrode Material on Radish Germination

September 14, 2025
blank

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.