• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Perfect imperfection: Electrode defects boost resistive memory efficiency

Bioengineer by Bioengineer
November 23, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Imperfect electrode proves more efficient

IMAGE

Credit: Daria Sokol/MIPT Press Office

Resistive switching memory devices offer several advantages over the currently used computer memory technology. Researchers from the MIPT Atomic Layer Deposition Lab have joined forces with colleagues from Korea to study the impact of electrode surface morphology on the properties of a resistive switching memory cell. It turned out that thicker electrodes have greater surface roughness and are associated with markedly better memory cell characteristics. The research findings were published in ACS Applied Materials & Interfaces.

Some materials, such as transition metal oxides, can switch from a dielectric to a conductive state and back under applied voltage. This effect underlies resistive random-access memory, a highly promising technology for nonvolatile storage. RRAM devices based on transition metal oxides are characterized by low energy consumption, great endurance, ease of extension, and rapid operation, prompting many companies to invest in the technology.

A resistive memory cell is a layered structure with an insulating layer positioned between two electrodes, to which the switching voltage is applied. The properties of the cell depend on the material between the electrodes, as well as on the composition and shape of the electrodes themselves. It is common for one electrode to be made of titanium nitride and the other of platinum. However, platinum is incompatible with modern semiconductor technology due to the absence of dry etching capability. This is not the case with ruthenium, which has a further advantage of being suitable for atomic layer deposition (ALD), enabling the manufacture of 3D vertical memory structures.

Study co-author and MIPT PhD student Aleksandra Koroleva from the University’s School of Electronics, Photonics and Molecular Physics commented: “To investigate how electrode thickness affects memory cell parameters, we grew ruthenium electrodes with a varying number of atomic layer deposition cycles. We then examined the surface of the electrodes using atomic force microscopy.” The team found that as the number of ALD layers grew, the grain size on the electrode surface increased from 5 to 70 nanometers.

The researchers tested the performance of their ruthenium films with different thicknesses as the bottom electrode in tantalum oxide-based RRAM, showing that thicker — and therefore rougher — electrodes actually improved the key performance characteristics of the memory device: its stability and endurance. Increasing ruthenium film thickness resulted in a lower memory cell resistance in both states and a higher resistance ratio between the low- and high-resistance states. Enhancing electrode roughness also decreased the forming and switching voltages, and increased the device’s endurance to an impressive 50 million switching cycles.

To explain their findings, the team proposed a simplified model that reflects the electric field distribution on large grains on the ruthenium electrode surface. The explanation was confirmed with conductive atomic force microscopy.

“Our findings offer insights into how memory cells of the new type could be greatly improved. Thicker ruthenium films used as electrodes have rougher surfaces. This in turn gives rise to areas of locally enhanced electric field on the slopes of the grains that boost the key performance characteristics of the device. We believe that our investigation will help to create more efficient and reliable memory devices in the future,” adds study co-author Andrey Markeev, who leads the ALD group at MIPT.

###

The research reported in this story was supported by the Russian Science Foundation and the Russian Ministry of Science and Higher Education.

Media Contact
Alena Akimova
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsami.0c14810

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesHardwareMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.