• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Improving high-energy lithium-ion batteries with carbon filler

Bioengineer by Bioengineer
November 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Conductive carbon fillers in lithium-ion batteries allow high power output with reversible energy storage

IMAGE

Credit: Zhengyu Ju and Guihua Yu

WASHINGTON, November 10, 2020 — Lithium-ion batteries are the major rechargeable power source for many portable devices as well as electric vehicles, but their use is limited, because they do not provide high power output while simultaneously allowing reversible energy storage. Research reported in Applied Physics Reviews, by AIP Publishing, aims to offer a solution by showing how the inclusion of conductive fillers improves battery performance.

The optimum battery design involves thick electrode structures. This enhances the energy density, but the design suffers from poor lithium-ion transport, a key step in the functioning of these electrodes. Various improvement techniques have been tried, including building vertically aligned channels or creating pores of the proper size to facilitate transport of the lithium ions.

Another approach involves the use of fillers made of carbon that conduct electricity. This study considered three types of fillers: single-walled carbon nanotubes (SWCNTs), graphene nanosheets, and a substance known as Super P, a type of carbon black particles produced during oxidation of petroleum precursors. Super P is the most commonly used conductive filler in lithium-ion batteries.

The fillers were added to a type of electrode material known as NCM that contains nickel, cobalt, and manganese. The investigators examined the resulting composites with scanning electron microscopy. The Super P and NCM particles were found to be arranged in a point-to-point contact mode.

The SWCNTs were, however, wrapped around the NCM particles, forming a conductive coating. In addition, networks of interconnected SWCNTs were observed in the spaces between NCM particles. The graphene nanosheets were also wrapped around the NCM electrode particles but not as uniformly as the SWCNTs were.

The SWCNTs were found to be the best conductive filler for NCM electrodes.

“The measured conductivity is consistent with percolation theory … When an electrically conductive filler is added to an insulating matrix, significant increases in conductivity will occur once the first conducting pathway through the composite is formed,” said Guihua Yu, one of the authors.

Since percolation requires a complete pathway through the filler, a sufficient amount of conductive filler is needed. Therefore, the investigators considered various amounts of filler and found that combining NCM electrodes with as little as 0.16% by weight of SWCNT produced good electrical conductivity. Higher amounts of Super P and graphene were required to achieve these same results.

The investigators used several spectroscopic techniques, including Raman and X-ray absorption spectroscopy, to study the resulting composites.

“This is a collaborative effort from the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy Basic Energy Sciences program. Our findings suggest that the integration of SWCNTs into the NCM electrode facilitate ion and charge transfer. This will lead to higher electrochemical utilization, especially at high rates of discharge,” Yu said.

###

The article, “Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems,” is authored by Zhengyu Ju, Xiao Zhang, Steven T. King, Calvin D. Quilty, Yue Zhu, Kenneth J. Takeuchi, Esther S. Takeuchi, David C. Bock, Lei Wang, Amy C. Marschilok, and Guihua Yu. The article will appear in Applied Physics Reviews on Nov. 10, 2020 (DOI: 10.1063/5.0024123). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0024123.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0024123

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)MaterialsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers Faced by Community Midwives in Rural Pakistan

Perioperative Tumor Cell Changes Impact Colorectal Surgery

AI Advances Male Pattern Hair Loss Stratification

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.