• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UMMS scientists co-discover first ‘off-switches’ for CRISPR/Cas9 gene editing

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Massachusetts Medical School

CRISPR/Cas9 genome editing is quickly revolutionizing biomedical research, but the new technology is not yet exact. The technique can inadvertently make excessive or unwanted changes in the genome and create off-target mutations, limiting safety and efficacy in therapeutic applications.

Now, researchers at UMass Medical School and the University of Toronto have discovered the first known "off-switches" for CRISPR/Cas9 activity, providing much greater control over the edits, according to a new study published in Cell.

Erik J. Sontheimer, PhD, professor in the RNA Therapeutics Institute at UMass Medical School, and Alan Davidson, PhD, professor of molecular genetics, and Karen Maxwell, PhD, assistant professor of biochemistry, at the University of Toronto, identified three naturally-occurring proteins that inhibit the Cas9 enzyme. These proteins, known as anti-CRISPRs, have the ability to block DNA cleavage by the Cas9 nuclease.

"CRISPR/Cas9 is a good thing because it introduces specific chromosome breaks that can be exploited to create genome edits, but because chromosome breakage can be hazardous, it is possible to have too much of a good thing, or to have it go on for too long," Dr. Sontheimer said. "There is a current shortage of reliable ways to turn off Cas9 once it has already been delivered to a cell. If you can trip an off-switch after the correct editing is done, then the problem is relieved. We report the first known natural inhibitors of Cas9 activity."

"CRISPR is very powerful, but we have to be able to turn it off," Dr. Davidson said. "This is a very fundamental addition to the toolbox, which should give researchers more confidence to use gene editing."

The CRISPR/Cas9 system is an adaptive immune system used by bacteria to defend itself against foreign genetic material. It consists of two components: a molecular scalpel (Cas9) that cuts DNA efficiently but is muzzled in its native state, and an RNA guide complex that unlocks the scalpel when a matching genetic sequence, defining the exact spot to cut, is found. These RNA guides are produced from "clustered regularly interspaced short palindromic repeats" or CRISPR arrays, which contain remnants of the genomes of past viral infections. By arming the Cas9 nuclease to target and inactivate these viruses, the CRISPR/Cas9 system provides an adaptive immune defense for the bacterial cells.

Scientists can reprogram the CRISPR/Cas9 system with artificial guide RNAs to cleave sequences within mammalian genomes and enable the precise insertion of new fragments of genetic information into cells. A simple and efficient way of editing the genome, CRISPR/Cas9 is changing biomedical research by making it far easier to inactivate or edit genes in a cell line for study. It also simplifies creation of animal disease models that can be used to study human ailments. Work that used to take months or years to perform can now be done in weeks.

Despite the power of the CRISPR/Cas9 system, it isn't exact. There are times when the RNA guide used to maneuver the cleaving enzyme into the right position within the genome also targets the enzyme to other sequences that are similar but not identical. These mismatched sites, which can occur as many as 100 times across the 6 billion nucleotides that make up the human genome, can sometimes also be cleaved, causing unintended damage.

In many CRISPR/Cas9 applications–including those under therapeutic development–there is a specific cell type, tissue or organ that is being targeted for editing, since that is where the disease manifests itself, or where the therapeutic benefit can be realized.

"CRISPR/Cas9 might go to the intended cells in these cases, but it will also likely go to other ancillary cells, tissues or organs as well. Cas9 activity in these ancillary cells, tissues or organs is at best useless and at worst a safety risk," Sontheimer said. "But if you could build an off-switch that keeps Cas9 inactive everywhere except the intended target tissue, then the tissue specificity will be improved."

The new paper not only identifies that "off-switch," Sontheimer said, but it shows that Cas9 inhibitors exist naturally and can be identified and exploited.

"There are many different forms of Cas9 that are produced by different bacteria, and the different Cas9s can each have different useful properties in genome editing," he said. "So there are already several Cas9s in the toolbox, with many more to come. We've now proven that such inhibitors are out there in the natural world and we've provided one possible strategy to find them."

###

Media Contact

Lisa Larson
[email protected]
508-856-2689
@UMassMedical

http://www.umassmed.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.