• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Why cryptophyte algae are really good at harvesting light

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Desmond Toa

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons that have filtered through the upper depths. The key to their survival, a study published on December 8 in Chem reveals, is the ability to more than triple how fast they capture light energy and funnel it through to molecules that convert it into food. The finding could generate new bio-inspired designs for light-harvesting systems.

Through experiments using ultrashort laser pulses, Princeton University researchers found that the surge in algal light capture results from how energy moves from one light-absorbing molecule to another. Over a course of nanoseconds, energy from light hops between thousands of molecules, and the exchange of energy from molecule to molecule can cause the molecules to vibrate. The increase in vibrations as light begins to be absorbed by the cryptophyte algae sets off a chain reaction that allows additional light energy to be brought in at a faster rate. This enhancement was observed at temperatures the algae would experience in nature.

"Sunlight, even on a bright day, is a pretty weak source of photons–too weak to drive the enzyme chemistry in photosynthesis–so what cryptophyte algae do is cast a net out to catch more photons at a faster rate," says lead author Gregory Scholes, a professor of chemistry at Princeton. "Because the light they're getting is much weaker than that received by a plant on the earth, photon harvesting is much more important."

Current light-harvesting technologies are using similar strategies to improve absorption by inorganic molecules, but not to the extent seen in cryptophyte algae. An organic material inspired by their biology, one that could capture a high number of photons in a very small surface area, could be very useful, for example, in sensors or technologies that communicate via light energy.

"It's become clear that the effects of molecular vibration can't be coincidence in cryptophyte algae–it is all fine-tuned–and so we'd really like to know how this same effect is engineered, and that will help us understand how the evolution of these organisms has trickled down toward these kinds of optimizations," Scholes says. "It would also be nice to work out how we can design a system that has this kind of optimization built in as opposed to randomly making supermolecular structures and seeing what happens."

###

This work was supported as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the Basic Energy Sciences program of the US Department of Energy Office of Science and the Natural Sciences and Engineering Research Council of Canada.

Chem, Dean et al.: "Vibronic Enhancement of Algae Light Harvesting" http://www.cell.com/chem/fulltext/S2451-9294(16)30229-7

Chem (@Chem_CP) is the first physical science journal published by Cell Press. The sister journal to Cell, Chem provides a home for seminal and insightful research and showcases how fundamental studies in chemistry and its sub-disciplines may help in finding potential solutions to the global challenges of tomorrow. Visit http://www.cell.com/chem. To receive Cell Press media alerts, contact [email protected].

Media Contact

Joseph Caputo
[email protected]
617-397-2802
@CellPressNews

http://www.cellpress.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Out-of-Sequence Kidney Allocation: Balancing Equity and Efficiency

August 26, 2025

Addressing Dental Care Gaps in Eating Disorder Recovery

August 26, 2025

Impact of Dimethenamid-P on Maize Growth and Yield

August 26, 2025

Triple Combo Diabetes Treatment: Efficacy and Safety

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Out-of-Sequence Kidney Allocation: Balancing Equity and Efficiency

Addressing Dental Care Gaps in Eating Disorder Recovery

Impact of Dimethenamid-P on Maize Growth and Yield

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.