• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study: Most migratory birds rely on a greening world

Bioengineer by Bioengineer
October 27, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Continued climate change could spell disaster for many species

IMAGE

Credit: Frank La Sorte, Cornell Lab of Ornithology

Ithaca, NY–A new study from the Cornell Lab of Ornithology confirms that most birds–but not all–synchronize their migratory movements with seasonal changes in vegetation greenness. This is the first study of its kind to cover the Western Hemisphere during the year-long life cycle of North American migratory birds that feed on vegetation, seeds, nectar, insects, or meat. The findings were published today in the Journal of Animal Ecology.

“As you might expect, migration synchronization with vegetation greenness is strongest for birds that eat vegetation, seeds, or both, during spring and autumn migration, but especially during spring,” says lead author Frank La Sorte at the Cornell Lab. “You could say they follow the ‘green wave’ north in the spring and then follow it in reverse during the fall, keeping pace with a wave that is retreating ahead of the North American winter.”

The “green wave” of maturing and dying vegetation is plainly visible in this animation based on data from the MODIS imaging sensors onboard the Terra and Aqua satellites. Vegetation greenness in Central and South America remains relatively stable except in the eastern portion of the continent. Animation by Frank La Sorte, Cornell Lab of Ornithology.

But the pattern does not hold for carnivores, such as hawks and eagles, in the West during either migration period. The evidence is also weak for synchronization among insect-eating birds during spring migration in eastern and central portions of the United States. Birds that rely on nectar–hummingbirds primarily–also showed looser ties to vegetation greenness in the West. The reason for the lack of synchronization for insect-eating birds in the East is a massive geographical barrier to migration: the Gulf of Mexico. Birds wintering in Central and South America cannot detect vegetation changes on the U.S. side of the Gulf in spring and vice versa in the fall.

Scientists used data from satellites to estimate the greenness of vegetation year round and cross-referenced that data with eBird observations for 230 North American migratory bird species from 2006 through 2018. eBird is the Lab’s worldwide bird observation reporting platform. So why does all this matter? Climate change.

Vegetation green-up in the spring is controlled by changes in temperature and precipitation; die-back of vegetation in the autumn is controlled by temperature and hours of daylight–all factors important in timing of migrations.

“Our findings emphasize the need to better understand the environmental cues that regulate migratory behavior and the implications for migratory birds if these cues change,” La Sorte says. “Unchecked climate change means it’s more likely that there will be a mismatch–migratory birds during stopover or when arriving on their breeding or wintering grounds could miss the peak food supply–no matter what they eat.”

###

Funding for this study comes from the Wolf Creek Charitable Foundation and the National Science Foundation.

Reference:

Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds, Frank A. La Sorte, Catherine H. Graham, Journal of Animal Ecology.

Media Contact
Pat Leonard
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/1365-2656.13345

Tags: BiologyClimate ChangeDevelopmental/Reproductive Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Mitochondrial Antioxidant Identified as Key Driver of Breast Cancer Metastasis

Mitochondrial Antioxidant Identified as Key Driver of Breast Cancer Metastasis

August 18, 2025
blank

eIF2B Activator DNL343 Targets ALS and TDP-43

August 18, 2025

American Geriatrics Society Introduces Revised Safer Medication Options for Older Adults

August 18, 2025

Plant-Based Hydrogel and Nano-Units Treat Heart Attack

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Guaranteeing Optimal Resource Allocation: A Focus on Scientific Advancements

Uncovering the Hidden Complexity of Myeloma: Bone Marrow Mapping Sheds New Light on Blood Cancer

Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.