• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists discover unusual materials properties at ultrahigh pressure

Bioengineer by Bioengineer
October 20, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Maria Brodskaya, NUST MISIS

An international team of scientists from NUST MISIS (Russia), Linköping University (Sweden) and University of Bayreuth (Germany) found that, contrary to the usual physical and chemical laws, the structure of some materials does not condense at ultrahigh pressures. Actually, it forms a porous framework filled with gas molecules. This happened with samples of Os, Hf, and W put together with N in a diamond anvil at a pressure of one million atmospheres. The discovery is described in Angewandte Chemie.

“You can transform a pencil lead into diamond if you squeeze it very hard” — this fact heard by many of us in childhood sounded like a complete nonsense. However, science laws make it clear that there is no miracle: both pencil lead and diamond are formed by the same chemical element, i.e. carbon, which actually forms a different crystal structure under very high pressure. It makes sense: ar pressure the empty space between atoms decreases and the material becomes denser. Until recently, this statement could be applied to any material.

It turned out that a number of materials can become porous at ultrahigh pressure. Such a conclusion was made by a group of scientists from NUST MISIS (Russia), Linköping University (Sweden) and University of Bayreuth (Germany). The team examined three metals (hafnium Hf, tungsten W, and osmium Os) with an addition of N when placed in a diamond anvil at a pressure of 1 million atmospheres, which corresponds to a pressure at a depth of 2.5 thousand kilometers underground. Scientists believe that it was the combination of pressure and nitrogen N that influenced the formation of a porous framework in the crystal lattice.

“Nitrogen itself is quite inert and without ultrahigh pressure it would not react with these metals in any way. Materials without nitrogen would simply condense in a diamond anvil. However, a combination gave an amazing result: some of the nitrogen atoms formed a kind of reinforcing framework in the materials, allowing the formation of pores in the crystal lattice. Consequently, additional nitrogen molecules entered the space”, said Professor Igor Abrikosov, head of the theoretical research group and NUST MISIS Laboratory for the Modeling and Development of New Materials.

The experiment was initially conducted physically by Sweden and German part of the group, and then its results were confirmed by theoretical modeling on NUST MISIS supercomputer. Scientists emphasize that the research is fundamental, i.e. materials with such properties are not yet created for specific tasks. At the moment, the very fact that previously unthinkable modifications of materials can be obtained is important.

A whole new step will be to preserve such materials at normal atmospheric pressure. In one of the previous works, scientists managed to preserve a special modification of rhenium nitride. Currently, rapid cooling to critical low temperatures is considered as one of the ways to stabilize new materials.

###

The work of the research team is marked as “Hot Paper” by the editorial board of Angewandte Chemie, and an illustration from the article is placed on the back cover. The research is supported by the Russian Science Foundation (Project No. 18-12-00492).

Media Contact
Lyudmila Dozhdikova
[email protected]

Original Source

https://en.misis.ru/university/news/misc/2020-10/6942/

Related Journal Article

http://dx.doi.org/10.1002/anie.202002487

Tags: Atomic PhysicsChemistry/Physics/Materials SciencesMaterialsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Heart Health in Young Adults Lowers Cardiovascular Disease Risk Later in Life

Boosting Heart Health in Young Adults Lowers Cardiovascular Disease Risk Later in Life

October 6, 2025
Scientists Secure $3.7 Million Grant to Explore the Link Between Perimenopause and Psychosis

Scientists Secure $3.7 Million Grant to Explore the Link Between Perimenopause and Psychosis

October 6, 2025

Cross-Attention Enhances Cancer Immune Profiling

October 6, 2025

Hippo Effector YAP Enhances Enterovirus in Diabetes

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    72 shares
    Share 29 Tweet 18
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Heart Health in Young Adults Lowers Cardiovascular Disease Risk Later in Life

Scientists Secure $3.7 Million Grant to Explore the Link Between Perimenopause and Psychosis

Cross-Attention Enhances Cancer Immune Profiling

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.