• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New approach to fighting cancer could reduce costs and side effects

Bioengineer by Bioengineer
October 20, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Carina Biotech

CAR-T biotherapeutics company Carina Biotech and researchers at the University of South Australia have developed a novel approach based on microfluidic technology to “purify” the immune cells of patients in the fight against cancer.

UniSA’s Future Industries Institute PhD student Mona Elsemary has developed a microfluidic approach to purify chimeric antigen receptor (CAR-T) cells, the bioengineered immune cells that are the basis of groundbreaking cellular immunotherapy – a transformative cancer therapy that harnesses the power of a patient’s immune system to fight their cancer.

Ms Elsemary’s work is part of Carina Biotech’s CAR-T development platform, which aims to produce effective treatments for solid cancers. Ms Elsemary will present her work tomorrow at the American Association for Cancer Research Conference on Tumor Immunology and Immunotherapy.

“CAR-T therapy has produced some remarkable results against blood cancers and there is a huge international research effort underway to transform this success into producing CAR-T treatments for solid cancers,” Ms Elsemary says.

“However, the CAR-T manufacturing process continues to be hindered by significant barriers and high costs – preventing the full potential of this life-saving therapy being reached.”

Such problems include the presence of non-viable cells and debris in the formulation and the presence of cryoprotectants (e.g., dimethyl sulfoxide or DMSO), typically used for the freezing and storage of CAR-T cell products.

The presence of dead cells can cause potentially severe side effects in recipients, and the US Federal and Drug Administration (FDA) has set strict viability specifications for CAR-T products, with approximately 10% of patients not receiving their treatment due to failure in meeting them.

The presence of cryoprotectants in final CAR-T products can also cause severe allergic reactions and toxic side effects in some patients.

“Current commercial CAR-T cell products still contain significant amounts of DMSO,” Ms Elsemere says. “Therefore, there is a significant need for a method that effectively purifies CAR T cells prior to infusion to patients. “

The approach was developed by the University of South Australia team led by Prof Benjamin Thierry in collaboration with Assoc Prof Majid Warkiani at the University Technology Sydney, and could achieve, within 30 minutes, depletion of over 70% of dead cells in the CAR T products, leading to an average of 20% increase in cell viability.

In addition, over 90% of the cryoprotectant DSMO is removed – all with no detrimental effect on the quality and functionality of the cells.

This microfluidic technology used in the method could easily be integrated within an automated closed-cell processing system and used in non-clean room facilities, researchers say.

Ms Elsemary’s research could greatly benefit patients by reducing both manufacturing cost and side-effects commonly associated to CAR T cell therapy.

###

Media Contact
Candy Gibson
[email protected]

Original Source

https://www.unisa.edu.au/Media-Centre/Releases/2020/new-approach-to-fighting-cancer-could-reduce-costs-and-side-effects/

Tags: Biomedical/Environmental/Chemical EngineeringcancerCell BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.