• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ultraviolet shines light on origins of the solar system

Bioengineer by Bioengineer
October 20, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NASA, ESA, Hubble Heritage Team

By analyzing the oxygen isotopes (varieties of an element that have some extra neutrons) of these refractory inclusions, the research team has determined that the differences in composition between the sun, planets and other solar system materials were inherited from the protosolar molecular cloud that existed even before the solar system. The results of their study have been recently published in Science Advances.

“It has been recently demonstrated that variations in isotopic compositions of many elements in our solar system were inherited from the protosolar molecular cloud,” said lead author Alexander Krot, of the University of Hawaii. “Our study reveals that oxygen is not the exception.”

Molecular cloud or solar nebula?

When scientists compare oxygen isotopes 16, 17 and 18, they observe significant differences between the Earth and the sun. This is believed to be due to processing by ultraviolet light of carbon monoxide, which is broken apart leading to a large change in oxygen isotope ratios in water. The planets are formed from dust that inherits the changed oxygen isotope ratios through interactions with water.

What scientists have not known is whether the ultraviolet processing occurred in the parent molecular cloud that collapsed to form the proto-solar system or later in the cloud of gas and dust from which the planets formed, called the solar nebula.

To determine this, the research team turned to the most ancient component of meteorites, called calcium-aluminum inclusions (CAIs). They used an ion microprobe, electron backscatter images and X-ray elemental analyses at the University of Hawaii’s Institute of Geophysics and Planetology to carefully analyze the CAIs. They then incorporated a second isotope system (aluminum and magnesium isotopes) to constrain the age of the CAIs, making the connection — for the first time — between oxygen isotope abundances and mass 26 aluminum isotopes.

From these aluminum and magnesium isotopes, they concluded that the CAIs were formed about 10,000 to 20,000 years after the collapse of the parent molecular cloud.

“This is extremely early in the history of the solar system,” said Lyons, who is an associate research professor at ASU’s School of Earth and Space Exploration, “so early that there would not be enough time to alter oxygen isotopes in the solar nebula.”

Although more measurements and modeling work are needed to fully assess the implications of these findings, they do have implications for the inventory of organic compounds available during solar system and later planet and asteroid formation.

“Any constraint on the amount of ultraviolet processing of material in the solar nebula or parent molecular cloud is essential for understanding the inventory of organic compounds that lead to life on Earth,” Lyons said.

###

Media Contact
Karin Valentine
[email protected]

Original Source

https://asunow.asu.edu/20201016-ultraviolet-shines-light-origins-solar-system

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aay2724

Tags: AstrophysicsChemistry/Physics/Materials SciencesSpace/Planetary ScienceStars/The Sun
Share13Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Nurses’ Insights on Employee Assistance Programs

Phase II Study Finds Iza-Bren Plus Osimertinib Achieves 100% Response Rate in EGFR-Mutated NSCLC

Novel Antibody-Drug Conjugate Demonstrates Promising Efficacy in EGFR-Mutated NSCLC Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.