• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Optical probes overcome light scattering in deep-brain imaging, says Neurophotonics report

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The authors: doi:10.1117/1.NPh.4.1.011002

BELLINGHAM, Washington, USA, and CARDIFF, UK — The ability to stimulate neural circuits with very high precision light to control cells — optogenetics — is key to exciting advances in the study and mapping of the living brain. In the current state of the art, spatially patterned light projected via free-space optics stimulates small, transparent organisms and excites neurons within superficial layers of the cortex.

However, light scattering and absorption in neural tissue cause light penetration to be extremely short, making it impossible to employ free-space optical methods to probe brain regions deeper than about 2 mm.

In "Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics," published today by SPIE, the international society for optics and photonics, in the journal Neurophotonics, principal author Eran Segev of professor Michael Roukes' group at Caltech, along with coauthors from Caltech, Baylor College of Medicine, and Stanford University, describe a solution. The article is available via open access.

Their approach combines nanophotonics and microelectromechanical systems (MEMS) in an implantable, ultra-narrow, silicon-based photonic probe to deliver light deep within brain tissues. This minimally invasive technique avoids major tissue displacement during implantation.

Using techniques of optogenetics, a protein in the brain serves as a sensory photoreceptor and can be controlled by specific wavelengths of light. These combined techniques provide a new approach to stimulation of brain circuits with remarkable resolution, enabling observation and control of individual neurons.

These breakthroughs present widespread and promising applications for the neuroscience and neuromedical research communities. From characterizing the role of specific neurons and identifying neural circuits responsible for behavior to enabling new methods of operant conditioning through reward-induced circuit activations, optogenetics has become a new path for neuroscientists seeking advances in research capabilities.

The article appears in a special section in Neurophotonics, Brain Mapping and Therapeutics, with Shouleh Nikzad, Jet Propulsion Laboratory, Caltech, serving as senior guest editor. The special section is part of an SPIE partnership with the Society for Brain Mapping and Therapeutics (SBMT), serving as a multidisciplinary approach for using advanced technology to solve neurological disorders and disease and to understand neuroscience. The effort was initiated during Nikzad's term as SBMT president in 2015.

###

David Boas of Massachusetts General Hospital, Harvard Medical School, is the editor-in-chief of Neurophotonics. Launched in 2014, Neurophotonics is published digitally in the SPIE Digital Library and in print. The journal covers advances in optical technology applicable to the study of the brain and their impact on basic and clinical neuroscience applications.

The SPIE Digital Library contains more than 458,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year. Abstracts are freely searchable, and a number of journal articles are published with open access.

About SPIE

SPIE, the international society for optics and photonics, is an educational not-for-profit organization founded in 1955 to advance light-based science, engineering and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library. In 2016, SPIE provided $4 million in support of education and outreach programs. http://www.spie.org

Media Contact

Amy Nel
[email protected]
360-685-5478
@SPIEtweets

http://spie.org/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Direct PZT Printing on Glass Enables Surface Haptics

Direct PZT Printing on Glass Enables Surface Haptics

August 26, 2025

Unveiling Genomic Insights for Glycemic Trait Drug Repurposing

August 26, 2025

New lncRNA PICSAR Drives Thyroid Cancer Progression

August 26, 2025

Transforming Patient Encounters with Relationship-Centered Care

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Direct PZT Printing on Glass Enables Surface Haptics

Unveiling Genomic Insights for Glycemic Trait Drug Repurposing

New lncRNA PICSAR Drives Thyroid Cancer Progression

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.