• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New study may reveal link to lipids playing a key role in Parkinson’s disease

Bioengineer by Bioengineer
October 16, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Possible first step in discovering and developing potential new Parkinson’s disease therapies

IMAGE

Credit: McLean Hospital

In a novel research study conducted by a team from the Neuroregeneration Institute at McLean Hospital, investigators believe they have found key brain cell type changes involving lipids, inflammation, and the development of Parkinson’s disease (PD). Their findings appear in the current issue of the Proceedings of the National Academy of Sciences of the United States of America.

“Our study emphasizes the importance of cooperative use, storage, and transport of lipids between brain cell types in Parkinson’s disease. Mechanisms involved in balancing cellular lipids–especially neutral lipids–such as we have characterized here, have been relatively understudied in the neurodegenerative diseases,” explained Oeystein R. Brekk, PhD, an assistant neuroscientist at the Neuroregeneration Institute and first author of the study. “However, a wealth of knowledge already exists on such cellular lipid use, and consequences of lipid variations in other organs. For example, most people will know lipids from the role they play in increased risk for cardiovascular disease. Like the cardiovascular disease models, our Parkinson’s disease and lipid-induced PD animal models point to lipid dependent pathological processes inside the brain, meaning we see dysregulation of the lipids and increased neuroinflammation.”

In their study, Brekk and the McLean team demonstrate concurrent lipid changes in dopaminergic neurons and their neighboring brain glial cells, such as microglia and astrocytes in Parkinson’s disease brains. Specifically, microglia and astrocytes showed abnormal patterns of intracellular lipid storage, which were significantly correlated with the accumulation of lipids within the dopaminergic neurons, the most vulnerable brain cells to the disease process. Overall lipid triglyceride content was statistically linked to a lipid-induced inflammatory stress marker in the brain tissue of PD patients. A remarkably similar brain cell and pathological picture was seen in an experimental animal model that simulates a Parkinson’s disease genetically linked enzymatic loss-of-function in the glucocerebrosidase gene, leading to glycosphingolipid accumulation.

The work shows that microglia, which to a large extent are controlling macrophage and immune functions in the brain, are overloaded with lipids in Parkinson’s disease, while astrocytes that normally supply lipids for maintenance and growth, on average, are losing some of that lipid content. At the same time, the neurons are accumulating lipids in an inverse linear fashion relative to the surrounding astrocytes. Moreover, the study shows that there is a statistically significant link between a molecule known as GPNMB. This stress immune response molecule is linked to astrocytes that typically appears to quench some of the inflammatory signals that are associated with lipid accumulation and overall triglyceride levels in the substantia nigra region of the brain.

“Remarkably, we can model these new findings in Parkinson’s disease versus healthy aging, microglia and astrocyte interactions in the vulnerable brain regions, precisely by mechanisms that block a lysosomal lipid breakdown pathway, shown to be a strong risk factor for developing PD,” said senior author Dr. Ole Isacson, founding director of the Neuroregeneration Institute at McLean Hospital and professor of neurology at Harvard Medical School. “These results support our lipid-inflammation hypothesis in the causation of Parkinson’s disease initiation and progression and may help us discover and develop new therapies by leaving behind conventional thinking about PD pathology, which to some extent has been limited to neurons and protein aggregates.”

According to Isacson, the next steps include exploring how these lipid cell-cell interactions in the brain are both adaptive and pathological over time and how such cell mechanisms can lead to Parkinson’s disease and Lewy body dementia.

###

ABOUT McLEAN HOSPITAL:

McLean Hospital has a continuous commitment to put people first in patient care, innovation and discovery, and shared knowledge related to mental health. It is consistently named the #1 freestanding psychiatric hospital in the United States by U.S. News & World Report. McLean Hospital is the largest psychiatric affiliate of Harvard Medical School and a member of Mass General Brigham. To stay up to date on McLean, follow us on Facebook, YouTube, and LinkedIn.

Media Contact
Laura Neves
[email protected]

Original Source

https://www.mcleanhospital.org/news/new-study-may-reveal-link-lipids-playing-key-role-parkinsons-disease

Related Journal Article

http://dx.doi.org/10.1073/pnas.2003021117

Tags: Medicine/HealthneurobiologyParkinson
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Standardizing Low-Dose Platelet Transfusions for Infants

July 31, 2025
α-Synuclein Fibril Structure Drives Parkinson’s Seeding

α-Synuclein Fibril Structure Drives Parkinson’s Seeding

July 31, 2025

Deep-Sea Fish and Ocean Health at Risk as Ocean Oxygen Levels Plummet, New Study Reveals

July 31, 2025

SuFEx Antitubercular Irreversibly Blocks Pks13

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Standardizing Low-Dose Platelet Transfusions for Infants

α-Synuclein Fibril Structure Drives Parkinson’s Seeding

Not All Low-Grade Prostate Cancers Pose Low Risk, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.