• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Finding the right colour to control magnets with laser pulses

Bioengineer by Bioengineer
October 13, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lancaster University

Scientists have discovered a new way to manipulate magnets with laser light pulses shorter than a trillionth of a second.

The international team of researchers, led by Lancaster and Radboud Universities, also identified the light wavelength or colour which enables the most efficient manipulation. The finding is published in Physical Review Letters.

Magnets have fascinated people since ancient times, but until a hundred years ago the theoretical understanding of magnetism remained very elusive. The breakthrough in understanding occurred with the development of quantum mechanics and the discovery of the fact that each electron has an intrinsic magnetic moment or spin.

The spin can be seen as an elementary “needle of a compass”, typically depicted as an arrow showing the direction from North to South poles. In magnets all spins are aligned along the same direction by the force called exchange interaction. The exchange interaction is one of the strongest quantum effects which is responsible for the very existence of magnetic materials.

The strength of the exchange interaction can be appreciated from the fact that it generates magnetic fields 10,000 times stronger than the Earth’s magnetic field. Another manifestation of its strength is the fact that it can drive spins to rotate with a period of one trillionth of a second and even faster.

Manipulating the exchange interaction would be the most efficient and ultimately fastest way to control magnetism. To achieve this result, the researchers used the fastest and the strongest stimulus available: ultrashort laser pulse excitation.

However, in order to detect/observe the effect of light on magnetism one would need an ultrafast magnetometer – a device which would be able to trace the dynamics of spins with less that a trillionth of a second resolution. This is much faster than the temporal resolution of modern electronics.

But the authors have found a solution to this problem, as lead researcher Dr Rostislav Mikhaylovskiy from Lancaster University explains: “The spins oscillate at Terahertz frequencies almost a trillion times faster than the standard power line frequency of 50 Hz. Thanks to such high frequencies of oscillations, the spins act as efficient antennas emitting electromagnetic radiation. By analyzing the properties of the emitted radiation we can extract information about the ultrafast magnetization dynamics triggered by the optical steering of the exchange forces.”

By systematically varying the colour of the excitation laser pulses from red to blue, the scientists were able to identify the light wavelength for which the effect of light on magnetism is the strongest.

Dr Mikhaylovskiy said: “It was very important to see that the effect of light on the exchange interaction really exists. By tuning the wavelength or colour of light we started to understand how to enhance this effect.”

This exciting discovery opens a new research line at Lancaster University led by Dr Mikhaylovskiy. The next step is to perform systematic studies of the ultrafast control of magnetism in a broad spectral range, to compare the efficiencies of the pumping in the far-, mid-infrared and visible ranges and thus to identify the most efficient as well as the fastest approach for the manipulation of spins. To this end a new laser system capable of producing laser pulses in all these frequency ranges has been commissioned.

###

Media Contact
Gillian Whitworth
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.125.157201

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsEnergy/Fuel (non-petroleum)Molecular PhysicsNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

RSNA AI Challenge Models Demonstrate Independent Mammogram Interpretation Capabilities

August 12, 2025
blank

Breakthrough Protein Therapy Emerges as First-Ever Antidote for Carbon Monoxide Poisoning

August 12, 2025

Mount Sinai Secures $4 Million Grant from American Cancer Society to Establish Cancer Health Research Center

August 12, 2025

Transparent 360° Self-Powered Photodetector Enables Ultralow-Power Computing

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

RSNA AI Challenge Models Demonstrate Independent Mammogram Interpretation Capabilities

Breakthrough Protein Therapy Emerges as First-Ever Antidote for Carbon Monoxide Poisoning

Mount Sinai Secures $4 Million Grant from American Cancer Society to Establish Cancer Health Research Center

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.