• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New research explores how super flares affect planets’ habitability

Bioengineer by Bioengineer
October 7, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UNC-Chapel Hill and NASA measure temperature for the largest ever sample of super flares

IMAGE

Credit: UNC-Chapel Hill

Ultraviolet light from giant stellar flares can destroy a planet’s habitability. New research from the University of North Carolina at Chapel Hill will help astrobiologists understand how much radiation planets experience during super flares and whether life could exist on worlds beyond our solar system.

Super flares are bursts of energy that are 10 to 1,000 times larger than the biggest flares from the Earth’s sun. These flares can bathe a planet in an amount of ultraviolet light huge enough to doom the chances of life surviving there.

Researchers from UNC-Chapel Hill have for the first time measured the temperature of a large sample of super flares from stars, and the flares’ likely ultraviolet emissions. Their findings, published Oct. 5 ahead of print in Astrophysical Journal, will allow researchers to put limits on the habitability of planets that are targets of upcoming planet-finding missions.

“We found planets orbiting young stars may experience life-prohibiting levels of UV radiation, although some micro-organisms might survive,” said lead study author Ward S. Howard, a doctoral student in the Department of Physics and Astronomy at UNC-Chapel Hill.

Howard and colleagues at UNC-Chapel Hill used the UNC-Chapel Hill Evryscope telescope array and NASA’s Transiting Exoplanet Survey Satellite (TESS) to simultaneously observe the largest sample of super flares.

The team’s research expands upon previous work that has largely focused on flare temperatures and radiation from only a handful of super flares from a few stars. In expanding the research, the team discovered a statistical relationship between the size of a super flare and its temperature. The temperature predicts the amount of radiation that potentially precludes on-surface life.

Super flares typically emit most of their UV radiation during a rapid peak lasting only five to 15 minutes. The simultaneous Evryscope and TESS observations were obtained at two-minute intervals, ensuring multiple measurements were taken during the peak of each super flare.

This is the first time the temperatures of such a large sample of super flares has ever been studied. The frequency of observations allowed the team to discover the amount of time super flares can cook orbiting planets with intense UV radiation.

The flares observed have already informed the TESS Extended Mission to discover thousands of exoplanets in orbit around the brightest dwarf stars in the sky. TESS is now targeting high priority flare stars from the UNC-Chapel Hill sample for more frequent observations.

“Longer term these results may inform the choice of planetary systems to be observed by NASA’s James Webb Space Telescope based on the system’s flaring activity,” said study co-author Nicholas M. Law, associate professor of physics and astronomy at UNC-Chapel Hill and principal investigator of the Evryscope telescope.

###

Media Contact
Shantell Kirkendoll
[email protected]

Original Source

https://arxiv.org/abs/2010.00604

Tags: AstronomyAstrophysicsSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.