• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Energy-harvesting plastics pass the acid test

Bioengineer by Bioengineer
October 6, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 KAUST

A polymer previously used to protect solar cells may find new applications in consumer electronics, reveals a KAUST team studying thin films capable of converting thermal energy into electricity.

When two sides of a semiconductor are at different temperatures, electron migration from hot to cool areas can generate a current. This phenomenon, known as the thermoelectric effect, typically requires semiconductors with rigid ceramic structures to maintain the heat difference between the two sides. But the recent discovery that polymers also exhibit thermoelectric behavior has prompted a rethink of how to exploit this method for improved energy harvesting, including incorporation into wearable devices.

Derya Baran and her team at KAUST are helping to engineer self-powered devices using a conducting polymer containing a blend of poly(3,4-ethylenedioxythiophene) and polystyrenesulfonate (PEDOT:PSS) chains. Relatively inexpensive and easy to process for applications, including inkjet printing, PEDOT:PSS is one of the top-performing thermoelectric polymers thanks to its ability to take in efficiency-boosting additives known as dopants.

Diego Rosas-Villalva, a researcher in Baran’s group, explains that thermoelectric PEDOT:PSS thin films are often exposed to dopants in the form of strong acids. This process washes away loose PSS chains to improve polymer crystallinity and leaves behind particles that oxidize PEDOT chains to boost electrical conductivity.

“We use nitric acid because it’s one of the best dopants for PEDOT,” says Rosas-Villalva. “However, it evaporates rather easily, and this decreases the performance of the thermoelectric over time.”

After the doping step is completed, the PEDOT:PSS film has to undergo a reverse procedure to neutralize or “dedope” some conductive particles to improve thermoelectric power generation.

Typical dedopants include short hydrocarbons containing positively charged amine groups. The KAUST researchers were studying a polymerized version of these amine chains, known as ethoxylated polyethylenimine, when they noticed a remarkable effect–PEDOT:PSS films dedoped with polyethylenimine retained twice as much thermoelectric power after one week compared with untreated specimens.

The team’s investigations revealed that polyethylenimine was effective at encapsulating PEDOT:PSS films to prevent nitric acid escape. In addition, this coating modified the electronic properties of the thermoelectric polymer to make it easier to harvest energy from sources, including body heat.

“We were not expecting that this polymer would improve the lifetime of the device, especially because it’s such a thin film–less than 5 nanometers,” says Villalva. “It’s been incorporated into other organic electronics before, but barely explored for thermoelectrics.”

###

Media Contact
KAUST Discovery team
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1044/energy-harvesting-plastics-pass-the-acid-test

Related Journal Article

http://dx.doi.org/10.1021/acsaem.0c01511

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)MaterialsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

WSU Researchers Uncover Biological Mechanism Behind Coho Salmon Die-Offs

August 14, 2025
Fluorenol Photobases Enable Ambient CO2 Capture

Fluorenol Photobases Enable Ambient CO2 Capture

August 14, 2025

Accelerating Detection of Shadows in Fusion Systems Using AI

August 14, 2025

Introducing 3D-SLISE: A Quasi-Solid Electrolyte Paving the Way for Safer and Greener Lithium-Ion Batteries

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound AI Unveils Groundbreaking Study on Using AI and Ultrasound Images to Predict Delivery Timing

County-Level Variations in Cervical Cancer Screening Coverage and Their Impact on Incidence and Mortality Rates

Mount Sinai Study Adds Evidence Linking Prenatal Acetaminophen Exposure to Increased Autism and ADHD Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.