• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Amphiphilic AIE-active sensor: Breaking the bottleneck of AIE bioimaging

Bioengineer by Bioengineer
October 5, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

Aggregation-induced emission (AIE) sensors bestow distinct advantages on bioimaging, especially in lighting up organelles with targeting events through aggregation process. However, previously reported most AIEgens can only disperse well in either hydrophilic or lipophilic system that always lead to uncontrollable molecular aggregation in the complicated physiological environment. Recently, Wei-Hong Zhu’ group from the East China University of Science and Technology proposed a novel and ideal strategy so-called “amphiphilic AIEgen” to solve the traditional AIE bottleneck, that is, avoiding undesirable aggregations with “fluorescence-off” state during cytomembrane and organelle transport. The specific amphiphilic characteristic could not only prevent aggregation in aqueous biological environment, but also keep good disperse state once entering the lipophilic organelle to avoid false signals, thereby overcoming the bottleneck of AIEgens targetability.
In the unique strategy of this amphiphilic AIEgen sensor, the hydrophilic sulfonate group was utilized to modulate the specific solubility of AIE building block quinoline-malononitrile (QM) in hydrophilic system with desirably initial “fluorescence-off” state. Moreover, the grafted p-toluenesulfonamide group enhanced the dispersity in lipophilic system and behaved as binding receptor to the ATP-sensitive potassium (KATP) on ER membrane. Generally, the unique amphiphilicity could be ascribed to the synergetic contribution: (i) the hydrophilic sulfonate group increases the aqueous solubility, and (ii) the grafted p-toluenesulfonamide group enhances the dispersity in lipophilic system.

The specific amphiphilicity of QM-SO3-ER well settles down the predicament of unexpected “always-on” fluorescence signal and unexpected aggregation signal before binding to ER, and strongly eliminates the background fluorescence caused by uncontrollable polarity change, thereby achieving the high fidelity mapping feedback with overcoming the bottleneck to AIEgens targetability. Specifically, both the cell co-localization experiment and docking study provide evidences on the accurate feedback of in situ mapping ER with extraordinary features, such as beneficial wash-free behavior, ultra-high time-dependent S/N in sensitivity, as well high intrinsic photostability and low cytotoxicity.
The amphiphilic AIE-active sensor with excellent targeting ability can pave a novel and straightforward pathway to build up high-fidelity AIE trapping sensor without false signal from undesirable aggregation before binding to the specific receptor, especially making a breakthrough to overcome the traditional AIE bottleneck to targeting capability, along with high selectivity via the specific receptor interaction.

###

See the article:
Zhirong Zhu, Qi Wang*, Hongze Liao, Ming Liu, Zhengxing Liu, Youheng Zhang and Wei-Hong Zhu*
Trapping endoplasmic reticulum with amphiphilic AIE-active sensor via specific interaction of ATP-sensitive potassium (KATP)
Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa198
https://doi.org/10.1093/nsr/nwaa198

Media Contact
Wei-Hong Zhu
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwaa198

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa198

Tags: BiologyBiotechnology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.