• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Amphiphilic AIE-active sensor: Breaking the bottleneck of AIE bioimaging

Bioengineer by Bioengineer
October 5, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

Aggregation-induced emission (AIE) sensors bestow distinct advantages on bioimaging, especially in lighting up organelles with targeting events through aggregation process. However, previously reported most AIEgens can only disperse well in either hydrophilic or lipophilic system that always lead to uncontrollable molecular aggregation in the complicated physiological environment. Recently, Wei-Hong Zhu’ group from the East China University of Science and Technology proposed a novel and ideal strategy so-called “amphiphilic AIEgen” to solve the traditional AIE bottleneck, that is, avoiding undesirable aggregations with “fluorescence-off” state during cytomembrane and organelle transport. The specific amphiphilic characteristic could not only prevent aggregation in aqueous biological environment, but also keep good disperse state once entering the lipophilic organelle to avoid false signals, thereby overcoming the bottleneck of AIEgens targetability.
In the unique strategy of this amphiphilic AIEgen sensor, the hydrophilic sulfonate group was utilized to modulate the specific solubility of AIE building block quinoline-malononitrile (QM) in hydrophilic system with desirably initial “fluorescence-off” state. Moreover, the grafted p-toluenesulfonamide group enhanced the dispersity in lipophilic system and behaved as binding receptor to the ATP-sensitive potassium (KATP) on ER membrane. Generally, the unique amphiphilicity could be ascribed to the synergetic contribution: (i) the hydrophilic sulfonate group increases the aqueous solubility, and (ii) the grafted p-toluenesulfonamide group enhances the dispersity in lipophilic system.

The specific amphiphilicity of QM-SO3-ER well settles down the predicament of unexpected “always-on” fluorescence signal and unexpected aggregation signal before binding to ER, and strongly eliminates the background fluorescence caused by uncontrollable polarity change, thereby achieving the high fidelity mapping feedback with overcoming the bottleneck to AIEgens targetability. Specifically, both the cell co-localization experiment and docking study provide evidences on the accurate feedback of in situ mapping ER with extraordinary features, such as beneficial wash-free behavior, ultra-high time-dependent S/N in sensitivity, as well high intrinsic photostability and low cytotoxicity.
The amphiphilic AIE-active sensor with excellent targeting ability can pave a novel and straightforward pathway to build up high-fidelity AIE trapping sensor without false signal from undesirable aggregation before binding to the specific receptor, especially making a breakthrough to overcome the traditional AIE bottleneck to targeting capability, along with high selectivity via the specific receptor interaction.

###

See the article:
Zhirong Zhu, Qi Wang*, Hongze Liao, Ming Liu, Zhengxing Liu, Youheng Zhang and Wei-Hong Zhu*
Trapping endoplasmic reticulum with amphiphilic AIE-active sensor via specific interaction of ATP-sensitive potassium (KATP)
Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa198
https://doi.org/10.1093/nsr/nwaa198

Media Contact
Wei-Hong Zhu
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwaa198

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa198

Tags: BiologyBiotechnology
Share12Tweet8Share2ShareShareShare2

Related Posts

Mapping Safflower HD-ZIP Genes Under Drought Stress

Mapping Safflower HD-ZIP Genes Under Drought Stress

September 30, 2025

Promising Advances: Radiation Therapy Offers Hope for Patients with Severe Heart Rhythm Disorders

September 29, 2025

Researchers Chart Navigation Strategies of Wild Cats and Dogs

September 29, 2025

Breakthrough Achievement: In Vitro Simultaneous Synthesis of All 21 tRNA Types

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Neural Spike Compression for Brain Implants

circMAN1A2-CENPB Interaction Drives Cancer Cell Growth

Emerging Review Highlights Rising Heavy Metal Risks in Reservoirs, Advocates for Advanced Monitoring and Eco-Friendly Remediation Strategies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.