• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Preheating gelatin as a facile approach to increase 3D printing duration

Bioengineer by Bioengineer
September 29, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SUTD researchers’ new approach finds that preheating gelatin extended its 3D printing time compared to freshly prepared gelatin and enhanced the printability of the ink, which is essential for extrusion-based bioprinting and food printing.

IMAGE

Credit: SUTD

Researchers from the Singapore University of Technology and Design (SUTD) demonstrated a simple yet effective approach to increase the printing time of gelatin by preheating it before mixing the gelatin with transglutaminase.

Gelatin has often been hailed as a promising candidate for bioprinting and 3D food printing because it is generally inexpensive to produce, edible and non-toxic to cells. However, gelatin is unable to retain its structure and melts at body temperature. Therefore, 3D printing of gelatin often includes transglutaminase (also known as meat glue), an enzyme which facilitates bonding between amino acids within the gelatin. However, the fast bond formation results in the rapid solidification of the liquid gelatin ink, forming clumps in the ink which lowers the quality of the 3D printed structures and clogs the nozzle during printing.

To overcome this limitation, the researchers from the Soft Fluidics Lab at SUTD developed a method to preheat the liquid gelatin ink and demonstrated the increase in printing duration of the gelatin ink in direct ink writing (DIW) 3D printing. The team found that preheating gelatin prior to 3D printing increased its printing time and produced high quality prints over a longer period of time (refer to figure).

Extensive studies on the rheological properties of preheated and freshly prepared gelatin were conducted to understand the differences in their print behaviours. The study also showed that preheated gelatin exhibited greater change in volume in phosphate buffer saline, which allowed for size changes post-printing.

“This inexpensive and simple approach has many useful applications involving gelatin in 3D printing, especially in the fields of food and medicine,” said the lead author and post-doctoral research fellow from SUTD, Dr Justin Tan.

“Gelatin inks are increasingly used in DIW 3D printing to fabricate complex 3D structures that require a long printing duration. We believe that the preheating of gelatin would serve as a facile route to improve the usability of gelatin in extrusion-based processes,” added Assistant Professor Michinao Hashimoto, the principal investigator of the team.

###

The research study was published by the International Journal of Bioprinting, a leading journal that encourages high quality research contributing to the advancement of 3D printing and its applications. Lee Cheng Pau, a PhD candidate at SUTD, also participated in this research project.

Media Contact
Jessica Sasayiah
[email protected]

Related Journal Article

http://dx.doi.org/10.18063/ijb.v6i4.296

Tags: Medicine/HealthNutrition/NutrientsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Nurses’ Insights on Employee Assistance Programs

September 6, 2025

Sex Differences in Alcohol’s Impact on Brain Dopamine

September 6, 2025

Fecal Transplants: New Hope for Alzheimer’s Treatment

September 6, 2025

CheckMate 77T: Nivolumab Preserves Quality of Life and Mitigates Symptom Worsening in Resectable NSCLC

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Nurses’ Insights on Employee Assistance Programs

Phase II Study Finds Iza-Bren Plus Osimertinib Achieves 100% Response Rate in EGFR-Mutated NSCLC

Novel Antibody-Drug Conjugate Demonstrates Promising Efficacy in EGFR-Mutated NSCLC Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.