• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Microcomb-injected pulsed lasers as variable microwave gears

Bioengineer by Bioengineer
September 29, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: W. Wenle (EPFL)

Low-noise microwave signals are of critical importance in numerous applications such as high-speed telecommunication and ultrafast data processing. Conventionally, such signals are generated with bulky and delicate microwave oscillators that are not suitable for out-of-door applications. But recently, physicists have been exploring a possible alternative: high-quality microwave generation using optical microresonator frequency combs.

Relying on the high optical frequency and spectral purity of laser fields, optical microresonators can generate low-noise microwaves in a compact and efficient manner. But a microresonator can usually only generate microwaves with very limited frequency tunability. The reason is that the microwave frequency depends on the resonator’s size, which is not itself highly tunable.

Publishing in Science Advances, researchers at Tobias Kippenberg’s lab at EPFL, Trinity College Dublin (TCD), and Dublin City University (DCU) have now developed a novel technique for generating variable low-noise microwaves with a single optical microresonator.

The approach injects a microresonator frequency comb into a compact laser whose intensity is modulated by an off-the-shelf microwave oscillator. By forcing the modulation frequency to tightly follow a subharmonic frequency of the microwave produced by the microresonator frequency comb, the team successfully generated new microwaves whose frequencies can be varied significantly.

In addition, the newly generated microwaves show much lower phase-noise levels than those of a microresonator frequency comb oscillator and off-the-shelf microwave oscillators. This mechanism, called frequency division, is used to transfer the frequency purity of an optical signal into the microwave domain.

The developed technique enables the spectral purity transfer between different microwave signals. “Traditionally, executing perfect microwave frequency division in a variable fashion has not been easy,” explains Dr Wenle Weng, who led the study. “Thanks to the fast-modulated semiconductor laser developed by our colleagues at TCD and DCU, now we can achieve this using a low-cost photodetector and a moderate control system.” The semiconductor laser also generates a secondary frequency comb with more densified spectral emissions that can be useful in many spectroscopic applications.

The key components in the setup of the proof-of-concept experiment, including the microresonator and the semiconductor laser, are discrete and connected with lengthy fibers. The team is now working on integrating and advanced-packing the device. With the ability to be miniaturized and mass-produced, a variable microwave oscillator and frequency comb generator like that can revolutionize the current surging market for portable low-noise microwave and frequency comb sources.

###

Professor Tobias Kippernberg’s lab are part of EPFL’s Institute of Physics (IPHYS), situated in the School of Basics Sciences.

Reference

Wenle Weng, Aleksandra Kaszubowska-Anandarajah, Junqiu Liu, Prince M. Anandarajah, Tobias J. Kippenberg, Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Science Advances 25 September 2020: Vol. 6, no. 39, eaba2807. DOI: 10.1126/sciadv.aba2807

Media Contact
Nik Papageorgiou
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aba2807

Tags: Chemistry/Physics/Materials SciencesTelecommunications
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbes and Metabolism Linked to Childhood Constipation

Impact of Parvovirus B19 on Childhood Myocarditis

Antibiotic Use in Culture-Negative Preterm Infants Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.