• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Born to be wild: Fungal highways let bacteria travel in exchange for thiamine

Bioengineer by Bioengineer
September 24, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba find a mutualistic growth mechanism between a filamentous fungus and a bacterium that allows the bacterium to travel in exchange for thiamine

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Tiny organisms head out on the highway, looking for adventure like they’ve ridden straight out of the 1960s rock hit, “Born to Be Wild.” Researchers from Japan have discovered that while perhaps not as thrill-seeking, bacteria do indeed travel on fungal highways and pay a toll in return.

In a study published this month in Life Science Alliance, researchers from the University of Tsukuba have revealed a mutual bacterial-fungal relationship that lets bacteria travel in exchange for thiamine.

Thiamine (vitamin B1) is essential to the health of almost all living organisms, and is synthesized by bacteria, plants, fungi and some protozoans. Free thiamine is scarce in the environment, and organisms appear to have developed numerous ways of obtaining it.

“Some species have developed mutually beneficial strategies that allow them to coexist,” says lead author of the study Professor Norio Takeshita. “But few strategies that satisfy the need for nutrients and physical niches have been documented. So, we examined the interaction of a fungus and a bacterium to investigate strategies that meet those needs.”

To do this, the researchers used transcriptomic analyses (i.e., examining all the RNA molecules of an organism), as well as genetic, molecular mass and imaging methods, including live imaging. Stable isotope labeling was used to investigate thiamine transfer from bacteria to the fungus.

“The bacteria cultured with the fungus traveled along fungal filaments using their flagella,” explains Professor Nozomu Obana, senior author. “They dispersed farther with the expansion of the fungal colony than they would have otherwise, suggesting that the fungal filaments supply space for bacteria to migrate, disperse and multiply.”

The fungus in this study is a type that can synthesize thiamine on its own, but used thiamine produced by the bacteria. Because these bacteria synthesize thiamine extracellularly, neighboring bacteria and fungi in nature could uptake it and use it, saving them the cost of synthesizing it themselves.

“We’re proposing a new mutualistic growth mechanism in bacterial-fungal interactions, in which the bacteria move along the fungal highway and pay thiamine as a toll to the growing fungal filaments,” says Professor Takeshita.

This research and future studies will contribute to an understanding of selective microbial communication, and live imaging could be used to screen for affinities between bacteria and fungi. Research in this area could be applied to a range of settings from fermentation, biomass degradation, and the promotion of plant growth, as well as plant and human pathogenesis.

###

The article, “Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism,” was published in Life Science Alliance at DOI:10.26508/lsa.202000878

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.26508/lsa.202000878

Tags: BacteriologyBiochemistryBioinformaticsBiologyCell BiologyEcology/EnvironmentGeneticsMicrobiologyMolecular BiologyNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Nurses’ Insights on Employee Assistance Programs

September 6, 2025

Sex Differences in Alcohol’s Impact on Brain Dopamine

September 6, 2025

Fecal Transplants: New Hope for Alzheimer’s Treatment

September 6, 2025

CheckMate 77T: Nivolumab Preserves Quality of Life and Mitigates Symptom Worsening in Resectable NSCLC

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Nurses’ Insights on Employee Assistance Programs

Phase II Study Finds Iza-Bren Plus Osimertinib Achieves 100% Response Rate in EGFR-Mutated NSCLC

Novel Antibody-Drug Conjugate Demonstrates Promising Efficacy in EGFR-Mutated NSCLC Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.