• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

First evidence that air pollution particles and metals are reaching the placenta

Bioengineer by Bioengineer
September 23, 2020
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pollution particles, including metals, have been found in the placentas of fifteen women in London, according to research led by Queen Mary University of London

IMAGE

Credit: QMUL

Pollution particles, including metals, have been found in the placentas of fifteen women in London, according to research led by Queen Mary University of London.

The study, funded by Barts Charity and published in the journal Science of The Total Environment, demonstrate that inhaled particulate matter from air pollution can move from the lungs to distant organs, and that it is taken up by certain cells in the human placenta, and potentially the foetus.

The researchers say that further research is needed to fully define the direct effect that pollution particles may have on the developing foetus.

Lead author Professor Jonathan Grigg from Queen Mary University of London said: “Our study for the first time shows that inhaled carbon particulate matter in air pollution, travels in the blood stream, and is taken up by important cells in the placenta. We hope that this information will encourage policy makers to reduce road traffic emissions in this post lock down period.”

Dr Norrice Liu from Queen Mary University of London added: “Pollution levels in London often exceed annual limits and we know that there is a link between maternal exposure to high pollution levels and problems with the foetus, including risk of low birthweight. However, until now we had limited insight into how that might occur in the body.”

Placentas from 15 consenting healthy women were donated to the study following the birth of their children at The Royal London Hospital. Pollution exposure was determined in 13 of the women, all of whom had exposure above the annual mean WHO limit for particulate matter. The cells in the placentas were analysed using a range of techniques including light and electron microscopy, x-rays and magnetic analyses.

Black particles that closely resembled particulate matter from pollution were found in placental cells from all fifteen women and these appeared in an average of 1 per cent of the cells which were analysed.

The majority of particles found in the placental cells were carbon-based, but researchers also found trace amounts of metals including silica, phosphorus, calcium, iron and chromium, and more rarely, titanium, cobalt, zinc and cerium.

Analysis of these nanoparticles strongly suggests that they predominantly originated from traffic-related sources. Many of these metals are associated with fossil fuel combustion, arising from fuel and oil additives, and vehicle brake-wear.

Dr Lisa Miyashita from Queen Mary University of London said: “We have thought for a while that maternal inhalation could potentially result in pollution particles travelling to the placenta once inhaled. However, there are many defence mechanisms in the lung that prevent foreign particles from travelling elsewhere, so it was surprising to identify these particles in the placental cells from all 15 of our participants.”

Fiona Miller Smith, Chief Executive of Barts Charity said: “This is an incredibly important study and immensely relevant to mums-to-be in our local community, indeed in any urban community anywhere in the world.

“In the current climate it can be hard to see beyond COVID and so we are particularly proud to have funded this vital work and truly hope that it will lead to greater awareness of the risks of pollution to the unborn child.”

The study involved researchers from University of Lancaster, Barts Health NHS Trust, University of Manchester, Central Manchester University Hospital NHS Foundation Trust, King’s College London, University of Birmingham, University of Oxford and University of Leeds.

###

For more information, please contact:

Joel Winston

Communications Manager (School of Medicine and Dentistry)

Queen Mary University of London

[email protected]

Tel: +44 (0)7968 267 064

Notes to the editor

* Images of the particles found in the placental cells can be downloaded via WeTransfer here: https://we.tl/t-a2R3Us17Ge

Fig. 1. Light microscopy images: (A) macrophage-enriched placental cell isolates from different participants, showing black inclusions (red arrows) compatible with phagocytosed inhaled particulate matter; (B) phagocytosed particulate matter in an airway macrophage obtained by sputum induction from a healthy child in London (Liuetal.,2018). Cell nuclei indicated with white arrows. Brightness and contrast of images were adjusted for optimal visualisation of particulate matter.

Fig. 2. Electron microscopy images of macrophage-enriched placental cell isolates from different participants, showing black inclusions (red arrows) in vacuoles, compatible with inhaled particulate matter.

* Research paper: ‘Evidence for the presence of air pollution nanoparticles in placental tissue cells’. Norrice M.Liu, Lisa Miyashita, Barbara A.Maher, Graham McPhail, Carolyn J.P.Jones, Benjamin Barratt, ShakilaThangaratinam, Vassil Karloukovski, Imad A.Ahmed, Zabeada Aslam, JonathanGrigg. Science of The Total Environment. DOI 10.1016/j.scitotenv.2020.142235

Available here: https://www.sciencedirect.com/science/article/abs/pii/S0048969720357648?via%3Dihub

About Queen Mary University of London

At Queen Mary University of London, we believe that a diversity of ideas helps us achieve the previously unthinkable.

In 1785, Sir William Blizard established England’s first medical school, The London Hospital Medical College, to improve the health of east London’s inhabitants. Together with St Bartholomew’s Medical College, founded by John Abernethy in 1843 to help those living in the City of London, these two historic institutions are the bedrock of Barts and The London School of Medicine and Dentistry.

Today, Barts and The London continues to uphold this commitment to pioneering medical education and research. Being firmly embedded within our east London community, and with an approach that is driven by the specific health needs of our diverse population, is what makes Barts and The London truly distinctive.

Our local community offer to us a window to the world, ensuring that our ground-breaking research in cancer, cardiovascular and inflammatory diseases, and population health not only dramatically improves the outcomes for patients in London, but also has a far-reaching global impact.

This is just one of the many ways in which Queen Mary is continuing to push the boundaries of teaching, research and clinical practice, and helping us to achieve the previously unthinkable.

Media Contact
Joel Winston
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scitotenv.2020.142235

Tags: Developmental/Reproductive BiologyEnvironmental HealthGynecologyMedicine/HealthPublic HealthPulmonary/Respiratory MedicineToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

The humble platelet takes on an exciting new—and doubly valuable—role, science reveals

The humble platelet takes on an exciting new—and doubly valuable—role, science reveals

August 15, 2025
blank

Harnessing Mitochondrial Biogenesis to Fight Acute Kidney Injury

August 15, 2025

Congress of Neurological Surgeons Unveils First-Ever Guidelines for Managing Functioning Pituitary Adenomas

August 15, 2025

Cell Death’s Dual Role in Apical Periodontitis

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The humble platelet takes on an exciting new—and doubly valuable—role, science reveals

Revolutionary Titanate Nanotubes Enhance Lithium-Ion Battery Anodes

Harnessing Mitochondrial Biogenesis to Fight Acute Kidney Injury

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.