• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Photoacoustic microscopy for identifying sentinel lymph nodes of breast cancer

Bioengineer by Bioengineer
September 23, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Yanfeng Dai, Xiang Yu, Jianshuang Wei, Fanxin Zeng, Yiran Li, Xiaoquan Yang, Qingming Luo, Zhihong Zhang

Accurate detection and characterization of SLNs are crucial in cancer staging and making therapeutic decisions. At present, the clinical gold standard used to detect SLNs is to label them with blue dye or a radioactive nanocolloid and then perform SLN biopsy. But these methods have drawbacks, radioscintigraphy has relatively poor spatial resolution, and blue dye will quickly label downstream LNs, leading to difficulties recognized SLN from other nodes. In addition, the removal of the SLN may cause some side effects, such as lymphedema, shoulder dysfunction, and arm numbness. Therefore, the ideal method for detecting SLN needs to have the following characteristics: 1) The probe can quickly enter the lymphatic system and retain in the SLN for a while. 2) The probe should contain a specific ligand for the selective targeting of breast cancer cells. 3) Imaging technique requires sufficient sensitivity and spatial resolution to detect the distribution of tumor cells in the entire SLN.

LN enlargement can occur during both tumour cell invasion and under inflammatory conditions. Therefore, the accurately identify the status of the SLN intraoperatively will help surgeons choose appropriate treatment regimen and minimize the complications caused by unnecessary LN removal. Although various nanoprobes based on passively targeting macrophages in SLN combined with imaging techniques have been developed to predict the metastatic status of SLNs, few can distinguish metastatic SLNs from inflamed LNs in vivo.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Zhihong Zhang and Professor Qingming Luo from Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China, and School of Biomedical Engineering, Hainan University, Haikou, Hainan, China, and co-workers have developed a CD44 and SR-B1 dual-targeting hyaluronic acid nanoparticle (5K-HA-HPPS) loaded with the near-infrared fluorescent/photoacoustic dye DiR-BOA for imaging SLNs in breast cancer. Due to the small size, negative charge, and target ligand, 5K-HA-HPPS can rapidly (12 h) in pLN. More interestingly, they found that photoacoustic signals from 5K-HA-HPPS showed a significantly distinct spatial distribution among LNs of different statuses, which the signals were mainly distributed within tumour metastatic SLNs but at the peripheries of normal and inflamed LNs. The ratio of PA intensity (R) at the centre of the LNs compared with that at the periphery in the 5K-HA-HPPS group was 5.93 ± 0.75 for T-MLNs, which was much higher than that for the Inf-LNs (R = 0.2 ± 0.07) and N-LNs (R = 0.45 ± 0.09). The reported method and technique provide a new strategy for accurately identifying the status of SLNs during breast cancer surgery and facilitate the implementation of appropriate tumour treatment strategies.

Fluorescence imaging showed that 5K-HA-HPPS enhanced in both T-MLNs and Inf-LNs, indicating that T-MLNs and Inf-LNs cannot be distinguished according to their fluorescence intensities. Here wide-field fluorescence imaging is two-dimensional imaging, which possesses the advantage of sensitivity, convenience, and non-invasiveness for long-term monitoring, but it cannot distinguish whether the fluorescent signal is located inside the LN or at the periphery of the LN. By providing deep penetration and a high spatial resolution, photoacoustic microscopy has a great potential for the 3D visualization of photoacoustic signal distribution in intact LNs.

Both tumour cell infiltration and inflammation result in the enlargement of SLNs. Therefore, whether SLN enlargement is caused by the metastasis of tumour cells or inflammation should be determined before SLN resection. The presented technique possess the ability to distinguish metastatic SLNs from inflamed LNs, thus will expected to provide an in vivo detection method for quickly identifying whether the SLN has tumor metastasis and will reduce the complications caused by unnecessary LN removal during breast cancer surgery, which has potential clinical application value.

###

Media Contact
Zhihong Zhang
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00399-0

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    132 shares
    Share 53 Tweet 33
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nature’s Remedies: Green Chemistry for Prostate Health

Equity in Ethiopia’s HIV/AIDS Policy: A Content Analysis

Barriers to Patient-Reported Outcomes in Rheumatoid Arthritis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.