• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The secret slimming effect of sweet potato waste

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The sweet potato pie you eat during the holidays might not be good for your waistline, but according to a new study published in the journal Heliyon, the starchy water left over from cooking the sweet potato could have slimming effects — at least in mice.

In the new study, mice on a high fat diet had significantly lower body weight after one month if they were also fed sweet potato peptide, which was produced by enzyme digestion of proteins in the water wasted during processing. This suggests the peptide plays a role in digesting fats, but more research is needed to determine whether this also happens in humans.

More than 105 million metric tons of sweet potato are produced globally every year, according to the International Potato Center (CIP), making it the world's fifth most important crop. About 15 percent of sweet potato is used to produce starch materials, processed foods, and distilled spirits in Japan. The resulting wastewater is usually discarded, potentially causing serious environmental problems.

In the new study, Dr. Koji Ishiguro from National Agriculture and Food Research Organization in Japan and colleagues wanted to find a new way to use this waste, so they investigated the effect of proteins found in the water on digestion in mice.

"We throw out huge volumes of wastewater that contains sweet potato proteins – we hypothesized that these could affect body weight, fat tissue and other factors," explained Dr. Ishiguro. "Finding alternative uses for the sweet potato proteins in wastewater could be good for the environment and industry, and also potentially for health."

The researchers fed three groups of mice high fat diets, giving one group the protein digest – sweet potato peptide (SPP) – at a high concentration and one group at a lower concentration. After 28 days they weighed the mice and measured their liver mass and fatty tissue. They also measured the levels of the fats cholesterol and triglyceride, as well as leptin, which controls hunger, and adiponectin, which regulates metabolic syndrome.

Mice that were given SPP had significantly lower body weight and liver mass. Mice fed SPP also had lower cholesterol and triglycerides, and higher levels of the hunger and lipid-controlling hormones. The results suggest that SPP helps activate appetite suppression and control lipid metabolism in mice fed high fat diets.

"We were surprised that SPP reduced the levels of fat molecules in the mice and that it appears to be involved controlling appetite suppression molecules," commented Dr. Ishiguro. "These results are very promising, providing new options for using this wastewater instead of discarding it. We hope SPP is used for the functional food material in future."

###

Article details:

"Effects of a sweetpotato protein digest on lipid metabolism in mice administered a high-fat diet" by Ishiguro et al. (http://www.heliyon.com/article/e00201/). The article appears in Heliyon (December 2016), published by Elsevier.

About Heliyon:

Heliyon is an online only, fully open access journal from Elsevier publishing quality original research across all disciplines. All Heliyon papers are freely available on both Heliyon.com and ScienceDirect. Heliyon is also indexed on Scopus and PubMed Central, ensuring it reaches the widest possible relevant audience. Learn more at http://www.heliyon.com/about/.

Media Contact

Mary Beth O'Leary
[email protected]
617-386-2151
@elseviernews

http://www.elsevier.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.