• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Projects led by Pitt chemical engineers receive more than $1 million in NSF funding

Bioengineer by Bioengineer
September 17, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Pittsburgh

Two projects led by professors in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh’s Swanson School of Engineering have recently received funding from the National Science Foundation.

Lei Li, associate professor of chemical and petroleum engineering at Pitt, is leading a project that will investigate the water wettability of floating graphene. Research over the past decade by Li and others has shown that water has the ability to “see through” atomic-thick layers of graphene, contributing to the “wetting transparency” effect.

“This finding provides a unique opportunity for designing multi-functional devices, since it means that the wettability of an atomic-thick film can be tuned by selecting an appropriate supporting substrate,” said Li. “Because the substrate is liquid, one can control the wettability in real-time, a capability that would be very useful for water harvesting of moisture from the air and in droplet microfluidics devices.”

The current project will use both experimental and computational methods to understand the mechanisms of wetting transparency of graphene on liquid substrates and demonstrate the real-time control of surface wettability. Li and his co-PIs Kenneth Jordan, Richard King Mellon Professor and Distinguished Professor of Computational Chemistry at Pitt and co-director of the Center for Simulation and Modeling; and Haitao Liu, professor of chemistry at Pitt, received $480,000 for the project titled, “Water wettability of floating graphene: Mechanism and Application.”

The second project will develop technology to help enable the widespread adoption of renewable energy, like solar and wind power. James McKone, assistant professor of chemical and petroleum engineering at Pitt, is collaborating with researchers at the University of Rochester and the University at Buffalo to develop a new generation of high-performance materials for liquid-phase energy storage systems like redox flow batteries, one of McKone’s areas of expertise. The project, “Collaborative Research: Designing Soluble Inorganic Nanomaterials for Flowable Energy Storage,” received $598,000 from the National Science Foundation, with $275,398 designated for Pitt.

McKone’s team will investigate the molecular properties of soluble, earth-abundant nanomaterials for use in liquid-phase battery systems. These batteries are designed to store massive amounts of electricity from renewable energy sources and provide steady power to the grid.

“Unlike the batteries we normally think of in phones and laptop computers, this technology uses liquid components that are low-cost, safe and long-lasting,” said McKone. “With continued development, this will make it possible to store all of the new wind and solar power that is coming available on the electric grid without adding a significant additional cost.”

###

McKone is collaborating with Dr. Ellen Matson, Wilmot Assistant Professor of Chemistry at the University of Rochester, and Dr. Timothy Cook, Associate Professor of Chemistry at the University at Buffalo.

Media Contact
Maggie Pavlick
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2020/ChemE-NSF-Funding/

Tags: Chemistry/Physics/Materials SciencesEnergy SourcesIndustrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.