Credit: University of Pittsburgh
Two projects led by professors in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh’s Swanson School of Engineering have recently received funding from the National Science Foundation.
Lei Li, associate professor of chemical and petroleum engineering at Pitt, is leading a project that will investigate the water wettability of floating graphene. Research over the past decade by Li and others has shown that water has the ability to “see through” atomic-thick layers of graphene, contributing to the “wetting transparency” effect.
“This finding provides a unique opportunity for designing multi-functional devices, since it means that the wettability of an atomic-thick film can be tuned by selecting an appropriate supporting substrate,” said Li. “Because the substrate is liquid, one can control the wettability in real-time, a capability that would be very useful for water harvesting of moisture from the air and in droplet microfluidics devices.”
The current project will use both experimental and computational methods to understand the mechanisms of wetting transparency of graphene on liquid substrates and demonstrate the real-time control of surface wettability. Li and his co-PIs Kenneth Jordan, Richard King Mellon Professor and Distinguished Professor of Computational Chemistry at Pitt and co-director of the Center for Simulation and Modeling; and Haitao Liu, professor of chemistry at Pitt, received $480,000 for the project titled, “Water wettability of floating graphene: Mechanism and Application.”
The second project will develop technology to help enable the widespread adoption of renewable energy, like solar and wind power. James McKone, assistant professor of chemical and petroleum engineering at Pitt, is collaborating with researchers at the University of Rochester and the University at Buffalo to develop a new generation of high-performance materials for liquid-phase energy storage systems like redox flow batteries, one of McKone’s areas of expertise. The project, “Collaborative Research: Designing Soluble Inorganic Nanomaterials for Flowable Energy Storage,” received $598,000 from the National Science Foundation, with $275,398 designated for Pitt.
McKone’s team will investigate the molecular properties of soluble, earth-abundant nanomaterials for use in liquid-phase battery systems. These batteries are designed to store massive amounts of electricity from renewable energy sources and provide steady power to the grid.
“Unlike the batteries we normally think of in phones and laptop computers, this technology uses liquid components that are low-cost, safe and long-lasting,” said McKone. “With continued development, this will make it possible to store all of the new wind and solar power that is coming available on the electric grid without adding a significant additional cost.”
###
McKone is collaborating with Dr. Ellen Matson, Wilmot Assistant Professor of Chemistry at the University of Rochester, and Dr. Timothy Cook, Associate Professor of Chemistry at the University at Buffalo.
Media Contact
Maggie Pavlick
[email protected]
Original Source
https:/