• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Bacterial mechanism converts nitrogen to greenhouse gas

Bioengineer by Bioengineer
December 6, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas. The paper was published online Nov. 17 in the Proceedings of the National Academy of Sciences.

"The first key to plugging a leak is finding the leak," said Kyle Lancaster, assistant professor of chemistry and chemical biology, and senior author on the research. "We now know the key to the leak and what's leading to it. Nitrous oxide is becoming quite significant in the atmosphere, as there has been a 120 percent increase of nitrous oxide in our atmosphere since pre-industrial times."

Lancaster, along with postdoctoral researcher Jonathan D. Caranto and chemistry doctoral candidate Avery C. Vilbert, showed that an enzyme made by the ammonia oxidizing bacterium Nitrosomonas europaea, cytochrome P460, produces nitrous oxide after the organism turns ammonia into an intermediate metabolite called hydroxylamine.

N. europaea and similar "ammonia-oxidizing bacteria" use hydroxylamine as their fuel source, but too much hydroxylamine can be harmful — and the resulting production of nitrous oxide is a chemical coping strategy.

Lancaster and his colleagues hypothesize that when ammonia-oxidizing bacteria are exposed to high levels of nitrogen compounds, such as in crop fields or wastewater treatment plants, then nitrous oxide production via cytochrome P460 will ramp up.

In the atmosphere, greenhouse gases are a soup of many species, and Lancaster explained that nitrous oxide has 300 times the potency of carbon dioxide. "That's a staggering number," he said. "Nitrous oxide is a really nasty agent to be releasing on a global scale."

Lancaster added that nitrous oxide is photochemically reactive and can form free radicals – ozone-depleting agents – which aggravates the issue of blanketing Earth's atmosphere with more gas and raising the globe's temperature. "In addition to its role as a greenhouse gas cloak, it's removing our protective shield," Lancaster said.

The United States is among the world leaders in importing nitrogen fertilizer, according to the U.S. Department of Agriculture's Economic Research Service. The Food and Agriculture Organization of the United Nations noted that the world's nitrogen fertilizer demand was projected to be 116 million tons for this past agricultural season.

"For the world, I realize that we are trying to feed more people and that means more fertilizer – and that means more nitrous oxide," said Lancaster, who noted that about 30 percent of nitrous oxide emissions come from agriculture and its accompanying land use.

To reduce the negative impact of nitrogen, farmers already use nitrification inhibitors.

Said Lancaster: "While it will be challenging to develop ways to stop this process, now we have pinpointed one biochemical step leading to nitrous oxide production. Future work may lead to inhibitors, molecules that can deactivate or neutralize this bacterial enzyme. Alternatively, we may just use this new information to develop better strategies for nitrogen management."

###

The Department of Energy Office of Science and the National Institutes of Health supported the research.

Media Contact

Melissa Osgood
[email protected]
607-255-2059
@cornell

http://pressoffice.cornell.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Recurrent Patterns Shape Neocortical Sensory Inference

September 15, 2025

New Program Unveiled to Enhance Treatment for Specific Heart Failure Types

September 15, 2025

Predicting Child GI Anomaly Mortality with Random Forest

September 15, 2025

Navigating Conscience in Elder Care: A Deep Dive

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Recurrent Patterns Shape Neocortical Sensory Inference

New Program Unveiled to Enhance Treatment for Specific Heart Failure Types

Predicting Child GI Anomaly Mortality with Random Forest

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.