• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New on/off functionality for fast, sensitive, ultra-small technologies

Bioengineer by Bioengineer
September 15, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team including Osaka University reports an ultra-small actuator with the fastest on/off switch and most precise position control in the world

IMAGE

Credit: Osaka University

Osaka, Japan – How do you turn on and off an ultra-small component in advanced technologies? You need an actuator, a device that transmits an input such as electricity into physical motion. However, actuators in small-scale technologies to date have critical limitations. For example, if it’s difficult to integrate the actuator into semiconductor electronics, real-world applications of the technology will be limited. An actuator design that operates quickly, has precise on/off control, and is compatible with modern electronics would be immensely useful.

In a study recently published in Nano Letters, a team including researchers from Osaka University has developed such an actuator. Its sensitivity, fast on/off response, and nanometer-scale precision are unparalleled.

The researchers’ actuator is based on vanadium oxide crystals. Many current technologies use a property of vanadium oxide known as the phase transition to cause out-of-plane bending motions within small-scale devices. For example, such actuators are useful in ultra-small mirrors. Using the phase transition to cause in-plane bending is far more difficult, but would be useful, for example, in ultra-small grippers in medicine.

“At 68°C, vanadium oxide undergoes a sharp monoclinic to rutile phase transition that’s useful in microscale technologies,” explains co-author Teruo Kanki. “We used a chevron-type (sawtooth) device geometry to amplify in-plane bending of the crystal, and open up new applications.”

Using a two-step protocol, the researchers fabricated a fifteen-micrometer-long vanadium oxide crystal attached by a series of ten-micrometer arms to a fixed frame. By means of a phase transition caused by a readily attainable stimulus–a 10°C temperature change–the crystal moves 225 nanometers in-plane. The expansion behavior is highly reproducible, over thousands of cycles and several months.

“We also moved the actuator in-plane in response to a laser beam,” says Nicola Manca and Luca Pelligrino, co-authors. “The on/off response time was a fraction of a millisecond near the phase transition temperature, with little change at other temperatures, which makes our actuators the most advanced in the world.”

Small-scale technologies such as advanced implanted drug delivery devices wouldn’t work without the ability to rapidly turn them on and off. The underlying principle of the researchers’ actuator–a reversible phase transition for on/off, in-plane motion–will dramatically expand the utility of many modern technologies. The researchers expect that the accuracy and speed of their actuator will be especially useful to micro-robotics.

###

The article, “Planar nanoactuators based on VO2 phase transition,” was published in Nano Letters at DOI: https://doi.org/10.1021/acs.nanolett.0c02638

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan’s leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan’s most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]

Original Source

https://resou.osaka-u.ac.jp/en/top

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.0c02638

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Examining Parental Anxiety in Pediatric Emergency Departments

August 31, 2025

Dedicated Teams Revolutionizing Organ Recovery Efforts

August 31, 2025

Exploring Biomedical Quality Engineering Career Pathways

August 31, 2025

CRISPR Unveils Rapid Detection of BK, JC Viruses

August 31, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Parental Anxiety in Pediatric Emergency Departments

Dedicated Teams Revolutionizing Organ Recovery Efforts

Exploring Biomedical Quality Engineering Career Pathways

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.