• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists propose nano-confinement strategy to form sub-nanometer reactors

Bioengineer by Bioengineer
September 4, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: LIANG Ji

Single-atom catalysts (SACs) are promising in electrocatalysis processes due to their maximum utilization of active species.

However, manipulation of these atomic-scale active sites to satisfy specific reactions is still an essential bottleneck due to their isolation features.

Prof. LIU Jian from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and his collaborators proposed a nano-confinement strategy to host multiple Fe and Cu single atoms inside the extremely narrow yet regular surface cavities of graphitic carbon nitride to form “sub-nanometer reactors”.

The study was published in Advanced Materials on Sept. 2.

“These Fe and Cu atoms, highly confined in the sub-nanometer reactors, not only provide stronger interaction with the reactants but also, more importantly, lead to significant synergetic effect due to their unique microenvironments in this extremely narrow space, which is highly favorable for catalysis, especially the tandem processes such as the nitrogen reduction reaction,” said Prof. LIANG Ji from Tianjin University, a co-author of the study.

“This is the first time that we successfully and conceptually push the nanoreactors towards a much smaller dimension to form sub-nanometer reactors, which brings distinctively different properties from the conventional nanoreactors,” added by Prof. LIU.

“First principle simulation reveals that this synergistic effect originates from the unique Fe-Cu coordination, which effectively modifies N2 absorption, improves electron transfer, and offers extra redox couples for nitrogen reduction reaction,” said Prof. SUN Chenghua from Swinburne University of Technology, another co-author of the study.

The researchers found that this significant synergy caused by the multiple confined atoms led to significant performance enhancement for the model electrocatalytic process, the nitrogen reduction reaction (NRR).

Improvements in terms of high ammonia yield and efficiency that are much higher in comparison with the mono-metal counterparts have been achieved.

This concept of constructing sub-nanometer reactors not only provides a new strategy of manipulating catalysts active centers at the subnanometer scale, but also sheds light on the design of novel catalysts with a precision spatial location at the sub-nanometer scale for a wide spectrum of catalytic reactions as well.

###

Media Contact
WANG Yongjin
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1002/adma.202004382

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leveraging Virtual Reality to Combat Substance Use Relapse

Exploring the Gut-Heart Link: How Microbiota Influence Heart Failure

ADAMTS2: Unlocking the Therapeutic Potential of a Multifunctional Protein

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.