• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanoearthquakes control spin centers in SiC

Bioengineer by Bioengineer
September 4, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: A. Hernandez-Mi­nguez

Researchers from the Paul-Drude-Institut in Berlin, the Helmholtz-Zentrum in Dresden and the Ioffe Institute in St. Petersburg have demonstrated the use of elastic vibrations to manipulate the spin states of optically active color centers in SiC at room temperature. They show a non-trivial dependence of the acoustically induced spin transitions on the spin quantization direction, which can lead to chiral spin-acoustic resonances. These findings are important for applications in future quantum-electronic devices and have recently been published in Physical Review Letters.

Color centers in solids are optically active crystallographic defects containing one or more trapped electrons. Of special interest for applications in quantum technologies are optically addressable color centers, that is, lattice defects whose electronic spin states can be selectively initialized and read-out using light. In addition to initialization and read-out, it is also necessary to develop efficient methods to manipulate their spin states, and thus the information stored in them. While this is typically realized by applying microwave fields, an alternative and more efficient method could be the use of mechanical vibrations. Among the different materials for the implementation of such strain-based technologies, SiC is attracting growing attention as a robust material for nano-electromechanical systems with an ultrahigh sensitivity to vibrations that also hosts highly-coherent optically active color centers.

In a recent work published in Physical Review Letters, researches from the Paul-Drude-Institut fuer Festkoerperelektronik, the Helmholtz-Zentrum Dresden-Rossendorf and the Ioffe Institute have demonstrated the use of elastic vibrations to manipulate the spin states of optically active color centers in SiC at room temperature. In their study, the authors use the periodic modulation of the SiC crystal lattice to induce transitions between the spin levels of the silicon-vacancy center, an optically active color center with spin S=3/2. Of special importance for future applications is the fact that, in contrast to most atom-like light centers, where the observation of strain-induced effects requires cooling the system to very low temperatures, the effects reported here were observed at room temperature.

To couple the lattice vibrations to the silicon-vacancy centers, the authors first selectively created such centers by irradiating the SiC with protons. Then they fabricated an acoustic resonator for the excitation of standing surface acoustic waves (SAW) on the SiC. SAWs are elastic vibrations confined to the surface of a solid that resemble seismic waves created during an earthquake. When the frequency of the SAW matches the resonant frequencies of the color centers, the electrons trapped in them can use the energy of the SAW to jump between the different spin sublevels. Due to the special nature of the spin-strain coupling, the SAW can induce jumps between spin states with magnetic quantum number differences Δm=±1 and Δm=±2, while microwave-induced ones are restricted to Δm=±1. This allows to realize full control of the spin states using high-frequency vibrations without the aid of external microwave fields.

In addition, due to the intrinsic symmetry of the SAW strain fields combined with the peculiar properties of the half-integer spin system, the intensity of such spin transitions depends on the angle between SAW propagation and spin quantization directions, which can be controlled by an external magnetic field. Moreover, the authors predict a chiral spin-acoustic resonance under traveling SAWs. This means that, under certain experimental conditions, the spin transitions can be switched on or off by inverting the magnetic field or the SAW propagation direction.

These findings establish silicon carbide as a highly promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.

###

Media Contact
Dr. Alberto Hernández-Mínguez
[email protected]

Original Source

https://www.fv-berlin.de/infos-fuer/medien-und-oeffentlichkeit/news/nanoearthquakes-control-spin-centers-in-sic

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.125.107702

Tags: Chemistry/Physics/Materials SciencesMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Groundbreaking Supernova Discovery Unveils the Inner Secrets of a Dying Star

Groundbreaking Supernova Discovery Unveils the Inner Secrets of a Dying Star

August 21, 2025
blank

New “In and Out” Mechanism Uncovers How Carbon Dioxide Interacts with Water’s Surface

August 20, 2025

What Existed Before the Big Bang?

August 20, 2025

UCLA and UC Santa Barbara’s BioPACIFIC MIP Secures Renewed NSF Funding to Propel AI-Driven Biobased Materials Innovation

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Groundbreaking Supernova Discovery Unveils the Inner Secrets of a Dying Star

Illuminating Tissue Origami: Harnessing Light to Explore and Manipulate Tissue Folding

Epilepsy Drugs Successfully Reverse Autism Symptoms in Mice, New Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.