• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 20, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The interplay of nonlinearity and topology–nontrivial eigenmodes coupling induced by nonlinearity

Bioengineer by Bioengineer
August 24, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Shiqi Xia, DarioJuki?, NanWang, DariaSmirnova, LevSmirnov, Liqin Tang, Daohong Song, Alexander Szameit, Daniel Leykam, JingjunXu, Zhigang Chen and Hrvoje Buljan

The ?ourishing of topological photonics in the last decade was achieved mainly due to developments in linear topological photonic structures. However, when nonlinearity is introduced, many intriguing questions arise. For example, are there universal ?ngerprints of the underlying topology when modes are coupled by nonlinearity, and what can happen to topological invariants during nonlinear propagation? To explore these questions, A new paper published in Light Science & Application, a team of scientists, led by Professor Zhigang Chen from the MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China and co-workers have experimentally demonstrated nonlinearity-induced coupling of light into topologically protected edge states using a photonic platform and developed a general theoretical framework for interpreting the mode-coupling dynamics in nonlinear topological systems.

The experiment results show the nonlinearity-induced mode-coupling between bulk and topological edge states, as they stated in the text:

“In the ?rst case, the topological defect is located at the SSH lattice edge (Fig. 1, left panels). When a narrow stripe beam is launched straight into the edge waveguide under linear conditions, it evolves into a topological edge state (Fig. 1(a2)). Such an edge state, with a characteristic amplitude and phase populating only the odd-numbered waveguides counting from the edge, is topologically protected by the chiral symmetry of the SSH lattice, as previously observed in the 1D photonic superlattice. On the other hand, when the excitation is shifted away from the edge with a tilted broad beam to pump the defect, we observe that the beam does not couple into the edge channel under linear conditions (Fig. 1b1). However, when the beam experiences a self-focusing nonlinearity, a signi?cant portion of the beam is coupled into the edge channel (Fig. 1b2), indicating that the nonlinearity somehow enables the energy to ?ow from the bulk modes into the topological edge mode of the SSH lattice.”

They have developed a general theoretical framework to explained the nonlinear process of a certain system:

“However, we observe that the interplay of nonlinearity and topology can couple light into the topological edge state of the linear system, which is inadmissible for entirely linear dynamics (e.g., see Fig. 1 (b2) and Fig. 2d-f). When this happens, we can identify

the nonlinear edge mode φ_(NL,edge), which inherits the pro?le of the linear edge mode φ_(L,edge) in the edge channel and is quanti?ed by F_edge (z)?0.98 after the nonlinear coupling has occurred, although it lacks the amplitude in the third waveguide. Thus, for a high nonlinearity, the eigenvalue of φ_(NL,edge) moves outside the gap (see Fig. 2c), and the edge mode is dominated by nonlinearity but has some features inherited from the linear topological edge mode; for a low nonlinearity, its eigenvalue stays inside the gap, so it is dominated mainly by the topology.”

###

Media Contact
Daohong Song
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00371-y

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Case Study: Dialysis Transition Improves Hypotension and Liver Oxygenation

Building a Comprehensive Collegiate Recovery Program Strategically

DDR1 Enhances Breast Cancer Resistance to Radiotherapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.