• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 18, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new iron based superelastic alloy capable of withstanding extreme temperatures

Bioengineer by Bioengineer
August 20, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tohoku University

Researchers from Tohoku University’s Graduate School of Engineering have discovered a novel iron-based superelastic alloy (SEA) capable of withstanding extreme temperatures -both high and low.

SEAs are found in a wide variety of commercial applications because of their superelasticity, allowing them to regain their original shape. Superelasticity occurs when the metal undergoes deformation at the point known as critical stress.

Generally, SEAs have a positive temperature dependence; the critical stress increases as the temperature rises. Conventional metal-based SEAs such as Ti-Ni, cannot be used at temperatures lower than -20C or higher than 80C and are costly to make. This limits their application to the form of thin wires or tubes.

Associate Professor at Tohoku University, Toshihiro Omori and his team developed an iron-based SEA system, known as Fe-Mn-Al-Cr-Ni. This cost-effective SEA can also operate at a much wider temperature range.

A significant advantage of the new SEA is its controllable temperature dependence. Increasing the amount of Chromium allowed the researchers to change the temperature dependence from a positive to a negative. Balancing the Chromium content resulted in zero temperature dependence with the critical stress remaining almost constant at various temperatures.

The discovery possesses wide-spread application for outer-space exploration given the large temperature fluctuations that occur,” says Professor Omori.”

Omori points to the fact that NASA is developing a superelastic tire that can withstand excessive deformation for Moon and Mars missions. The temperature differences between night and day on the Moon and Mars are -170C to 120C and -150C to 20C respectively.

“Yet, the new, SEA’s usage does not stop there.” Professor Omori adds, “It can potentially be used in tension braces in buildings or column elements in bridges – providing greater resistance to earthquakes.”

The discovery possesses wide-spread application for outer-space exploration given the large temperature fluctuations that occur,” says Professor Omori.”

Omori points to the fact that NASA is developing a superelastic tire that can withstand excessive deformation for Moon and Mars missions. The temperature differences between night and day on the Moon and Mars are -170C to 120C and -150C to 20C respectively.

“Yet, the new, SEA’s usage does not stop there.” Professor Omori adds, “It can potentially be used in tension braces in buildings or column elements in bridges – providing greater resistance to earthquakes.”

###

Media Contact
Toshihiro Omori
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.abc1590

Tags: Chemistry/Physics/Materials SciencesComputer ScienceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nature-Inspired Vision for Fault-Tolerant Motion

January 18, 2026
Wild Relatives Boost Genetic Diversity for Maize

Wild Relatives Boost Genetic Diversity for Maize

January 18, 2026

Tracking Fungal Pathogen Evolution Through Comparative Genomics

January 18, 2026

Revolutionary Lightweight Multi-Material Vehicle Door Concept

January 18, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nature-Inspired Vision for Fault-Tolerant Motion

Wild Relatives Boost Genetic Diversity for Maize

Tracking Fungal Pathogen Evolution Through Comparative Genomics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.