• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Secretion of sugar polymers modulates multicellularity in the bacterium Myxococcus xanthus

Bioengineer by Bioengineer
August 12, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fundamental research in bacterial physiology

IMAGE

Credit: Salim Timo Islam

Research by INRS (Institut National de la Recherche Scientifique) Professor Salim Timo Islam and his PhD student Fares Saïdi has recently revealed that multicellular physiology in the social bacterium Myxococcus xanthus–a bacterium that can actively reorganize its community according to the environment in which it is found–is modulated by the secretion of two natural sugar polymers in separate zones of a swarm. Results from their research, done in collaboration with an international team, have been published in the journal PLOS Biology.

Professor Salim Timo Islam has been carrying out research in bacterial physiology for four years, focusing on the interactions of bacterial cells with each other, as well as with underlying surfaces. Along with his PhD student Fares Saïdi, they are investigating the origins of multicellularity. More precisely, their work revolves around the factors that allow cells to multiply, specialize, communicate, interact, and move. These behaviours are all associated with multicellularity as they promote the expansion of a community of cells and the formation of complex structures.

Their research has characterized two compounds contributing to multicellularity and the distinct areas of production, for each, within a community. Exopolysaccharide (EPS) is produced more by cells at the periphery of the swarm. Production of the second sugar polymer, a novel biosurfactant (BPS), is enriched toward the centre of the swarm. “Since the factors contributing to the development of bacterial communities remain poorly understood, it is very exciting to have identified another,” mentions Professor Islam, a specialist in microbial biochemistry and co-first author of the study along with his PhD student Fares Saïdi.

A Model Bacterium

Multicellularity is typically associated with organisms such as fungi, plants, and animals. As part of this study, the researchers studied the basis for this evolutionary transition on a smaller scale: the bacterium Myxococcus xanthus. This organism has the distinction of being able to reorganize the structure of its population, allowing it to react to different environmental signals and even eat other bacteria.

In response to a hostile environment, such as in instances of nutrient deficiency, this bacterium directs its homogenous population to specialize into three subtypes of cells. These communities thus form 3-dimensional structures, visible to the naked eye. It is thanks to this multicellular lifestyle that they ensure the survival of their community.

###

About the study

The researchers received financial support from the Natural Sciences and Engineering Research Council of Canada, the Banting Research Foundation, the Canadian Institutes of Health Research, the INRS, the PROTEO research network, Aix-Marseille University, the French National Research Agency (ANR), the French National Centre for Scientific Research (CNRS), CONACYT of Mexico, and the National Science Foundation.
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000728

About the INRS (Institut National de la Recherche Scientifique) — inrs.ca

The INRS is a university dedicated exclusively to research and graduate training. Since its creation in 1969, it has actively contributed to the economic, social, and cultural development of Quebec. The INRS is 1st in Quebec and 2nd in Canada in research intensity. It is composed of four interdisciplinary research-and-training centres located in Quebec City, Montreal, Laval, and Varennes, each with its own strategic specializations: (i) Water, Earth, and Environment Centre, (ii) Energy, Materials, and Telecommunications Centre (iii) Urbanization, Culture, and Society Centre, and (iv) Armand-Frappier Health and Biotechnology Centre. The INRS community has over 1500 students, postdoctoral fellows, faculty, and staff.

Contact:



Audrey-Maude Vézina
Service des communications de l’INRS
418-254-2156 (cell)
[email protected]

Media Contact
Audrey-Maude Vezina
[email protected]

Original Source

http://www.inrs.ca/english/actualites/secretion-different-sugar-polymers-modulates-multicellularity

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.3000728

Tags: BacteriologyBiochemistryBiodiversityBiologyCell BiologyEvolutionMicrobiologyPhysiologyPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Alveolar Macrophages Predict TST/IGRA Conversion Resistance

November 1, 2025
Intestinal Parasites in Punjab’s Rock Pigeons Unveiled

Intestinal Parasites in Punjab’s Rock Pigeons Unveiled

November 1, 2025

Rj4 Immunity Network Limits Soybean-Rhizobia Symbiosis

November 1, 2025

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Low and High-Tech Tools for Activity Schedules

Switching MS Patients: Anti-CD20 to Cladribine Tablets

Revolutionary ARDitox Uncovers Cross-Reactive TCR Epitopes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.